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Abstract

The recognition of human activities is one of the key
problems in video understanding. Action recognition is
challenging even for specific categories of videos, such as
sports, that contain only a small set of actions. Interest-
ingly, sports videos are accompanied by detailed commen-
taries available online, which could be used to perform ac-
tion annotation in a weakly-supervised setting. For the spe-
cific case of Cricket videos, we address the challenge of
temporal segmentation and annotation of actions with se-
mantic descriptions. QOur solution consists of two stages.
In the first stage, the video is segmented into “scenes”, by
utilizing the scene category information extracted from text-
commentary. The second stage consists of classifying video-
shots as well as the phrases in the textual description into
various categories. The relevant phrases are then suitably
mapped to the video-shots. The novel aspect of this work
is the fine temporal scale at which semantic information is
assigned to the video. As a result of our approach, we en-
able retrieval of specific actions that last only a few sec-
onds, from several hours of video. This solution yields a
large number of labelled exemplars, with no manual effort,
that could be used by machine learning algorithms to learn
complex actions.

1. Introduction

The labeling of human actions in videos is a challenging
problem for computer vision systems. There are three diffi-
cult tasks that need to be solved to perform action recogni-
tion: 1) identification of the sequence of frames that involve
an action performed, 2) localisation of the person perform-
ing the action and 3) recognition of the pixel information
to assign a semantic label. While each of these tasks could
be solved independently, there are few robust solutions for
their joint inference in generic videos.

Certain categories of videos, such as Movies, News
feeds, Sports videos, etc. contain domain specific cues that
could be exploited towards better understanding of the vi-
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Batsman: Gambhir

Description: “he pulls it from outside off stump and just
manages to clear the deep square leg rope”

Figure 1. The goal of this work is to annotate Cricket videos with
semantic descriptions at a fine-grain spatio-temporal scale. In this
example, the batsman action of a “pull-shot”, a particular manner
of hitting the ball, is labelled accurately as a result of our solution.
Such a semantic description is impossible to obtain using current
visual-recognition techniques alone. The action shown here lasts
a mere 35 frames (1.2 seconds).

sual content. For example, the appearance of a Basketball
court [10] could help in locating and tracking players and
their movements. However, current visual recognition so-
lutions have only seen limited success towards fine-grain
action classification. For example, it is difficult to auto-
matically distinguish a “forehand” from a ‘“half-volley” in
Tennis. Further, automatic generation of semantic descrip-
tions is a much harder task, with only limited success in the
image domain [4].

Instead of addressing the problem using visual analy-
sis alone, several researchers proposed to utilize relevant
parallel information to build better solutions [2]. For ex-
ample, the scripts available for movies provide a weak su-
pervision to perform person [2] and action recognition [6].
Similar parallel text in sports was previously used to de-
tect events in soccer videos, and index them for efficient
retrieval [11, 12]. Gupta et al. [3] learn a graphical model
from annotated baseball videos that could then be used to
generate captions automatically. Their generated captions,
however, are not semantically rich. Lu et al. [7] show that
the weak supervision from parallel text results in superior
player identification and tracking in Basketball videos.

In this work, we aim to label the actions of players in
Cricket videos using parallel information in the form of on-
line text-commentaries [1]. The goal is to label the video
at the shot-level with the semantic descriptions of actions
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5.6 Muralitharan to Gambhir, 2 runs, that hurried into the left-hander with the
angle, he went back to drag a pull in the air over square leg, Gambhir has to dive
in for the second, better throw would have had him in trouble, it was a wide one

Figure 3. An example snippet of commentary obtained from
Cricinfo.com. The commentary follows the format: event number
and player involved along with the outcome (2 runs). Following
this is the descriptive commentary: (red) bowler actions, (blue)
batsman action and (green) other player actions.

and activities. Two challenges need to be addressed towards
this goal. Firstly, the visual and textual modalities are not
aligned, i.e. we are given a few pages of text for a four hour
video with no other synchronisation information. Secondly,
the text-commentaries are very descriptive, where they as-
sume that the person reading the commentary understands
the keywords being used. Bridging this semantic gap over
video data is much tougher than, for example, images and
object categories.

1.1. Our Solution

We present a two-stage solution for the problem of fine-
grained Cricket video segmentation and annotation. In the
first stage, the goal is to align the two modalities at a
“scene” level. This stage consists of a joint synchronisation
and segmentation of the video with the text commentary.
Each scene is a meaningful event that is a few minutes long
(Figure 2), and described by a small set of sentences in the
commentary (Figure 3). The solution for this stage is in-
spired from the approach proposed in [§], and presented in
Section 2.

Given the scene segmentation and the description for
each scene, the next step is to align the individual de-
scriptions with their corresponding visuals. At this stage,
the alignment is performed between the video-shots and
phrases of the text commentary. This is achieved by clas-
sifying video-shots and phrases into a known set of cate-
gories, which allows them to be mapped easily across the
modalities, as described in Section 3. As an outcome of
this step, we could obtain fine-grain annotation of player
actions, such as those presented in Figure 1.

Our experiments, detailed in Section 4 demonstrate that
the proposed solution is sufficiently reliable to address
this seemingly challenging task. The annotation of the
videos allow us to build a retrieval system that can search
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Figure 2. Typical visuals observed in a scene of a Cricket match. Each event begins with the Bowler running to throw the ball, which is hit
by the Batsman. The event unfolds depending on the batsman’s stroke. The outcome of this particular scene is 6-Runs. While the first few
shots contain the real action, the rest of the visuals have little value in post-hoc browsing.

across hundreds of hours of content for specific actions that
last only a few seconds. Moreover, as a consquence of
this work, we generate a large set of fine-grained labelled
videos, that could be used to train action recognition solu-
tions.

2. Scene Segmentation

A typical scene in a Cricket match follows the sequence
of events depicted in Figure 2. A scene always begins with
the bowler (similar to a pitcher in Baseball) running towards
and throwing the ball at the batsman, who then plays his
stroke. The events that follow vary depending on this ac-
tion. Each such scene is described in the text-commentary
as shown in Figure 3. The commentary consists of the event
number, which is not a time-stamp; the player names, which
are hard to recognise; and detailed descriptions that are hard
to automatically interpret.

It was observed in [8] that the visual-temporal patterns
of the scenes are conditioned on the outcome of the event.
In other words, a /-Run outcome is visually different from
a 4-Run outcome. This can be observed from the state-
transition diagrams in Figure 4. In these diagrams, the shots
of the video are represented by visual categories such as
ground, sky, play-area, players, etc. The sequence of the
shot-categories is represented by the arrows across these
states. One can observe that for a typical Four-Runs video,
the number of shots and their transitions are lot more com-
plex than that of a 1-Run video. Several shot classes such as
replay are typically absent for a 1-Run scene, while a replay
is expected as the third or fourth shot in a Four-Runs scene.

While the visual model described above could be use-
ful in recognizing the scene category for a given video seg-
ment, it cannot be immediately used to spot the scene in a
full-length video. Conversely, the temporal segmentation of
the video is not possible without using an appropriate model
for the individual scenes themselves. This chicken-and-egg
problem can be solved by utilizing the scene-category in-
formation from the parallel text-commentary.

Let us say F; represents one of the IV frames and Sy, rep-
resents the category of the k-th scene. The goal of the scene
segmentation is to identify anchor frames F;, F;, which are
most likely to contain the scene Si. The optimal segmenta-
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Figure 4. State transition diagrams for two scene categories: (left) One Run and (right) Four-Runs. Each shot is classified into one of the
given states. Only the prominent state-transitions are shown, each transition is associated with a probability (not shown for brevity). Notice
how the one-run scene includes only a few states and transitions, while the four-run model involves a variety of visuals. However, the “sky”
state is rarely visited in a Four, but is typically seen in Six-Runs and Out models.

tion of the video can be defined by the recursive function

max_{p(Sk | [F;, F}]) +C(Fjt1, Sk+1)},

C(F;, Sp) =
(Fs Si) = | max,

where p(Sy | [F;, Fj]) is the probability that the sequence
of frames [F;, F;] belong to the scene category Sj. This
probability is computed by matching the learnt scene mod-
els with the sequence of features for the given frame set.
The optimisation function could be solved using Dynamic
Programming (DP). The optimal solution is found by back-
tracking the DP matrix, which provides the scene anchor
points Fs, , Fg,,..., Fg,.

We thus obtain a temporal segmentation of the given
video into its individual scenes. A typical segmentation
covering five overs, is shown in Figure 5. The descriptive
commentary from the parallel-text could be used to anno-
tate the scenes, for text-based search and retrieval. In this
work, we would like to further annotate the videos at a much
finer temporal scale than the scenes, i.e., we would like to
annotate at the shot-level. The solution towards shot-level
annotation is presented in the following Section.

3. Shot/Phrase Alignment

Following the scene segmentation, we obtain an align-
ment between minute-long clips with a paragraph of text.
To perform fine-grained annotation of the video, we must
segment both the video clip and the descriptive text. Firstly,
the video segments at scene level are over-segmented into
shots, to ensure that it is unlikely to map multiple actions
into the same shot. In the case of the text, given that the
commentary is free-flowing, the action descriptions need to
be identified at a finer-grain than the sentence level. Hence
we choose to operate at the phrase-level, by segmenting
sentences at all punctuation marks. Both the video-shots
and the phrases are classified into one of these categories:
{Bowler Action, Batsman Action, Others}, by learning suit-
able classifiers for each modality. Following this, the in-
dividual phrases could be mapped to the video-shots that
belong to the same category.

3.1. Video-Shot Recognition

In order to ensure that the video-shots are atomic to
an action/activity, we perform an over-segmentation of the
video. We use a window-based shot detection scheme that
works as follows. For each frame F;, we compute its dif-
ference with every other frame F);, where j € [i —w/2,7 +
w/2], for a chosen window size w, centered on F;. If the
maximum frame difference within this window is greater
than a particular threshold 7, we declare F; as a shot-
boundary. We choose a small value for 7 to ensure over-
segmentation of scenes.

Each shot is now represented with the classical Bag of
Visual Words (BoW) approach [9]. SIFT features are first
computed for each frame independently, which are then
clustered using the K-means clustering algorithm to build
a visual vocabulary (where each cluster center corresponds
to a visual word). Each frame is then represented by the
normalized count of number of SIFT features assigned to
each cluster (BoW histograms). The shot is represented by
the average BoW histogram over all frames present in the
shot. The shots are then classified into one of these classes:
{Bowler Runup, Batsman Stroke, Player Close-Up, Umpire,
Ground, Crowd, Animations, Miscellaneous}. The classifi-
cation is performed using a multiclass Kernel-SVM.

The individual shot-classification results could be fur-
ther refined by taking into account the temporal neighbour-
hood information. Given the strong structure of a Cricket
match, the visuals do not change arbitrarily, but are pre-
dictable according to the sequence of events in the scenes.
Such a sequence could be modelled as a Linear Chain Con-
ditional Random Field (LC-CRF) [5]. The LC-CREF, con-
sists of nodes corresponding to each shot, with edges con-
necting each node with its previous and next node, result-
ing in a linear chain. The goal of the CRF is to model
P(y1,..eyYnlx1, ..., xs), where z; and y; are the input and
output sequences respectively. The LC-CRF is posed as the
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Figure 5. Results of Scene Segmentation depicted over five-overs.
The background of the image is the cost function of the scene
segmentation. The optimal backtrack path is given as the red
line, with the inferred scene boundaries marked on this path. The
groundtruth segmentation of the video is given as the blue lines. It
can be noticed that for most scenes the inferred shot boundary is
only a few shots away from the groundtruth.

objective function

K

K-1
p(VIIX) = exp(>_aulyr) + D ap(yr yrs1))/Z(X)
k=1 k=1

Here, the unary term is given by the class-probabilities pro-
duced by the shot classifier, defined as

au(yk) =1

The pair-wise term encodes the probability of transitioning
from a class yj to Yx41 as

— P(yk|@;).

ap(Yks Yr+1) = 1 — P(yr+1|yx)-

The function Z(X) is a normalisation factor. The transition
probabilities between all pairs of classes are learnt from a
training set of labelled videos. The inference of the CRF is
performed using the forward-backward algorithm.

3.2. Text Classification

The phrase classifier is learnt entirely automatically. We
begin by crawling the web for commentaries of about 300
matches and segmenting the text into phrases. It was ob-
served that the name of the bowler or the batsman is some-
times included in the description, for example, “Sachin
hooks the ball to square-leg”. These phrases can accord-
ingly be labelled as belonging to the actions of the Bowler
or the Batsman. From the 300 match commentaries, we ob-
tain about 1500 phrases for bowler actions and about 6000
phrases for the batsman shot. We remove the names of
the respective players and represent each phrase as a his-
togram of its constituent word occurrences. A Linear-SVM

on the pads once more Dravid looks to nudge it to square
leg off the pads for a leg bye

ﬁ !

that is again slammed towards long-on

shortish and swinging away lots of bounce

Figure 6. Examples of shots correctly labeled by the batsman or
bowler actions. The textual annotation is semantically rich, since
it is obtained from human generated content. These annotated
videos could now be used as training data for action recognition
modules.

is now learnt for the bowler and batsman categories over
this bag-of-words representation. Given a test phrase, the
SVM provides a confidence for it to belong to either of the
two classes.

The text classification module is evaluated using 2-fold
cross validation over the 7500 phrase dataset. We obtain a
recognition accuracy of 89.09% for phrases assigned to the
right class of bowler or batsman action.

4. Experiments

Dataset: Our dataset is collected from the YouTube
channel for the Indian Premier League(IPL) tournament.
The format for this tournament is 20-overs per side, which
results in about 120 scenes or events for each team. The
dataset consists of 16 matches, amounting to about 64 hours
of footage. Four matches were groundtruthed manually at
the scene and shot level, two of which are used for training
and the other two for testing.

4.1. Scene Segmentation

For the text-driven scene segmentation module, we use
these mid-level features: {Pitch, Ground, Sky, Player-
Closeup, Scorecard}. These features are modelled using
binned color histograms. Each frame is then represented by
the fraction of pixels that contain each of these concepts,
the scene is thus a spatio-temporal model that accumulates
these scores.

The limitation with the DP formulation is the amount of
memory available to store the DP score and indicator matri-
ces. With our machines we are limited to performing the DP
over 100K frames, which amounts to 60 scenes, or 10-overs
of the match.

The accuracy of the scene segmentation is measured
as the number of video-shots that are present in the cor-
rect scene segment. We obtain a segmentation accuracy of



Kernel Linear | Polynomial | RBF | Sigmoid
Vocab: 300 78.02 80.15 81 77.88
Vocab: 1000 | 82.25 81.16 82.15 80.53

Table 1. Evaluation of the video-shot recognition accuracy. A vi-
sual vocabulary using 1000 clusters of SIFT-features yields a con-

siderably good performance, with the Linear-SVM.

R | Bowler Shot | Batsman Shot
2 22.15 394
4 43.37 47.6
6 69.09 69.6
8 79.94 80.8
10 87.87 88.95

Table 2. Evaluation of the neighbourhood of a scene boundary that
needs to be searched to find the appropriate bowler and batsman
shots in the video. It appears that almost 90% of the correct shots
are found within a window size of 10.

83.45%. Example segmentation results for two scenes are
presented in Figure 5, one can notice that the inferred scene
boundaries are very close to the groundtruth. We observe
that the errors in segmentation typically occur due to events
that are not modelled, such as a player injury or an extended
team huddle.

4.2. Shot Recognition

The accuracy of the shot recognition using various fea-
ture representations and SVM Kernels is given in Table 1.
We observe that the 1000 size vocabulary works better than
300. The Linear Kernel seems to suffice to learn the deci-
sion boundary, with a best-case accuracy of 82.25%. Refin-
ing the SVM predictions with the CRF based method yields
an improved accuracy of 86.54. Specifically, the accuracy
of the batsman/bowler shot categories is 89.68%.

4.3. Shot Annotation Results

The goal of the shot annotation module is to identify the
right shot within a scene that contains the bowler and bats-
man actions. As the scene segmentation might contain er-
rors, we perform a search in a shot-neighbourhood centered
on the inferred scene boundary. We evaluate the accuracy of
finding the right bowler and batsman shots within a neigh-
bourhood region R of the scene boundary, which is given in
Table 2. It was observed that 90% of the bowler and bats-
man shots were correctly identified by searching within a
window of 10 shots on either side of the inferred boundary.

Once the shots are identified, the corresponding textual
comments for bowler and batsman actions, are mapped to
these video segments. A few shots that were correctly an-
notated are shown in Figure 6.

5. Conclusions

In this paper, we present a solution that enables rich
semantic annotation of Cricket videos at a fine tempo-
ral scale. Our approach circumvents technical challenges
in visual recognition by utilizing information from online
text-commentaries. We obtain a high annotation accu-
racy, as evaluated over a large video collection. The anno-
tated videos shall be made available for the community for
benchmarking, such a rich dataset is not yet available pub-
licly. In future work, the obtained labelled datasets could be
used to learn classifiers for fine-grain activity recognition
and understanding.
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