
Robust and PracticalWiFi Human Sensing
UsingOn-device Learningwith a Domain AdaptiveModel

Elahe Soltanaghaei
Carnegie Mellon University
esoltana@andrew.cmu.edu

Rahul Anand Sharma
Carnegie Mellon University
rahulans@andrew.cmu.edu

ZehaoWang
Carnegie Mellon University
zehaow@andrew.cmu.edu

Adarsh Chittilappilly
Carnegie Mellon University
achittil@andrew.cmu.edu

Anh Luong
Sandia National Laboratories
anh.luong.n@gmail.com

Eric Giler
Endeveo, Inc

eric.giler@endeveo.com

Katie Hall
Endeveo, Inc

katie.hall@endeveo.com

Steve Elias
Endeveo, Inc

eli@endeveo.com

Anthony Rowe
Carnegie Mellon University

agr@ece.cmu.edu

Abstract
TheubiquityofWiFi devices combinedwith the ability to cover large areas,

pass through walls, and detect subtle motions makesWiFi signals an ideal
medium for sensing occupancy.While extremely promising, existingWiFi
sensing solutionshavenot been rigorously tested outside of lab environments
and don’t often consider real-world constraints associated with non-expert
installers, cost-effective platforms and long-termchanges in the environment.
This paper presents M-WiFi, a user-in-the-loop self-tuning framework for
WiFi-based human presence detection with on-device learning and domain
adaption capabilities that operates entirely onanembeddedplatform.M-WiFi
robustly detects human presence by separating human-specific disturbances
onWiFi signals fromthoseof staticobjects,moving furnitureorevenpets.The
high-level features of human presence are captured in an initial generalized
classification model which adapts over time to a new building by selectively
asking users to annotate a small number of critical time periods. We evaluate
M-WiFi in 7 different houses, for a total of 100 days,with amixture of pets and
including periods of sleep and stationary activities.We show that our domain
adaptive model can detect the human presence with an average accuracy of
90% in a completely new house after only 3 days of self-tuning and rapidly
reaches a steady-state performance of 98% in long-term operations.

CCS Concepts
•Human-centeredcomputing→Ubiquitousandmobilecom-
puting design and evaluationmethods.
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1 Introduction
Accurate, reliable, cost-effective, and easy-to-deploy human pres-

ence detection has long remained a missing component for home
automation,heating, andcoolingoptimization,orelderlymonitoring.
For example, multiple studies indicate that improved occupancy sen-
sor systemscouldbeutilized to realize 30%energy savings inboth res-
idential andcommercial buildings [21].However, existingoccupancy
sensors such as CO2, passive infrared (PIR), ultrasonic, image, or
sound sensors, suffer frommultiple problems including high deploy-
ment and maintenance costs, complicated user interfaces, privacy
concerns, or low accuracy that result in user frustration and uncom-
fortable living conditions. To address these challenges, significant
progress has been made in device-free human sensing that utilizes
the information collected fromwireless signals without requiring
occupants to wear or carry devices. These approaches characterize
the disturbances caused by the human body on wireless signals and
then use variations in signal measurements to detect the presence of
people across wide areas or even through walls. Given the pervasive
nature ofWiFi inmost buildings, these approaches have thepotential
to be extremely cost effective in terms of accuracy given a relatively
lowsensordensity.Unfortunately, outsideof lab environments, these
approaches still fall short in practice for two main reasons:

• Robustness and Generalization. WiFi signal propagation is
sensitive to many different factors such as the placement of ob-
jects and furniture in the environment, the direction and distance
between wireless nodes and people within the space, or external
factors like reflections frommoving objects outside of the desired
coverage area. For these reasons, it is challenging to design a ro-
bust and generalizableWiFi sensing system that can automatically
adapt to a new building or previously unseen context. The most
robust current systems rely on user motion in the Line-of-Sight
(LoS) of wireless devices, which limits the range and fails to de-
tect people without significant motion such as during periods of
sleeping or sitting.
• Realtime Operation on Embedded Platforms. The current
wireless sensing solutions are seldom tested in realistic setups,
overlooking a number of important deployment challenges. First,
the techniques proposed thus far require server-class computers
and an abundance of labeled training data. Even split architectures
with a cloud processing component are largely impractical due
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to the high volume of wireless data that would need to be continu-
ously streamed for real-timeprocessing. Ideally, the entire pipeline
of pre-processing, sensing and learning should happen at the edge.
Second, most of the target applications for this type of sensing
technology tend to be price sensitive further limiting processing,
memory, and storage to embedded application-class targets.
To address these challenges, we present M-WiFi, a robust and

embedded WiFi sensing system with on-device learning and do-
main adaption capabilities. M-WiFi uses a set of low-cost plug-in
embedded modules that contain WiFi radios with multiple anten-
nas that periodically communicate and monitor the Channel State
Information (CSI). To detect the presence of people, M-WiFi first
characterizes the multipath environment of a building, which in-
cludes static wireless reflections. Then, it monitors these wireless
paths and their changes due to human presence. The key innovation
of M-WiFi is its capability in separating human specific signatures
from environment-dependent features. M-WiFi does this by initially
using a generalized (baseline) classification model that captures the
high-level wireless disturbances caused by the human body learned
froma largemulti-house dataset. Thismodel is then adapted to a new
house by learning its multipath profile using a small amount of train-
ing data from the users. We present a user-in-the-loop self-tuning
framework that combines transfer learning with domain adaptive
models optimized to both retrain and execute on an embedded target.

Compared to existing approaches that tend to operate holistically
on the aggregate channel response,M-WiFi enhances the spatial cov-
erage and sensing sensitivity by disentanglingmultipath signals and
usingeachuniquepathasan independent sensor.The intuition is that
the amount of fading and variation that each wireless reflection suf-
fers from the human presence will be different, resulting in indepen-
dently fading channels. This is achieved using amultipath profile of
the physical space and combining signal measurements across time,
space (multiple antennas at theWiFi transceivers), and frequency
(e.g. OFDM subcarriers). This additional information increases the
chance of capturing fluctuations indicative of human presence even
in dynamic environments with moving furniture and pets.

After the system has been deployed in a new building, M-WiFi
asks the user to label a small amount of data for domain adaptation.
One of the major challenges with training amachine learningmodel
at the edge is being able to select the ideal regions of data that provide
the most information while minimizing potentially frustrating user
touch-points. In addition, unlike the data used to train the baseline
model, we have to assume that user input is error prone. To strike
a balance between user convenience and classification performance,
M-WiFi uses an unsupervised segmentation algorithm to detect the
potential occupancy changes. These selected time periods are sent
to the user for verification in the first few days of deployment, which
are then used to adapt the model to the new environment. In our
current system, this is a text report generated at the end of each
day, but it could easily be collected with a more user-friendly mobile
app or dashboard. It is worth noting that unlike fingerprint-based
approaches, our method does not require scenario-specific tuning
for every location or activity. Instead, we tune a pre-trained model
with partially annotated data from the daily activities of occupants.

To realize a real-time and economical implementation, we design
M-WiFi such that it performs the entire multipath profile extraction,
tuning, and testing at the edge on an embedded application class

platform.We use a wrapper model that evaluates the model perfor-
mance with a certain subset of features until reaching an optimal
feature vector. Since our technology solution uses proprietary soft-
ware algorithms that interface to off-the-shelf embedded devices, it
can be seamlessly upgraded toWiFi and IoT devices that are already
deployed in residences.We implementedM-WiFi using TPLinkN600
OpenWRT platforms [1] that collects Channel State Information
using an AtherosWiFi chipset [24] attached to 2 antennas. The sys-
tem collects data, extracts features, classifies occupancy and retrains
entirely locally on the embedded platform. We conduct extensive
experiments in 7 different houses for a combined 100 days of data and
total of 25 different experiments with a mixture of pets and during
periods of activity and sleep. We also evaluate the sensitivity of the
proposed system to furniture movements, or the presence of mov-
ing objects and pets. In summary, our adaptive model achieves an
average accuracy of 90% in a new house after 3 days of model tuning.
Even with accidentally miss-labeled information, we see that the
system is still able to improve accuracy and eventually converge on
our expected level of performance albeit with a penalty in terms of
training time.We show that asM-WiFi continues domain adaptation,
the models rapidly adjust to the new house and approximate the
steady-state performance of 98% in long-term operations.
The main contributions of this paper include:
• A self-tuning and self-calibration framework to adapt a general-
ized model to a new environment on embedded edge computing
platforms by minimizing user-involvement in the domain adapta-
tion process.
• Robust human presence detection by directly sensing the human
body through wireless multipath signals. M-WiFi can detect sta-
tionary occupancies such as long periods of sleeping, and can
differentiate human from pets or other moving objects.
• Extensive evaluation experiments across multiple houses while
the occupants have their daily routine over the course of 100 days.
The annotated datasets will be released publicly for the use of the
research community.

2 Background and RelatedWork
2.1 Human Presence Detection

Among the traditional technologies for human presence sensing,
PIR [2, 19, 20], CO2 [27] and cameras [26] have been identified as
commercial occupancy sensors. However, none of these sensors
accurately measure occupancy. They suffer from high deployment
and maintenance costs, are limited to LoS scenarios and easily trig-
gered by pets or non-human motions. In addition, cameras raise
privacy concerns specially for residential buildings. Even more ad-
vanced techniques such as wide-band ultrasonic methods [16] or
Radar-based techniques [23] still struggle to cover residential spaces
with many smaller sized rooms. In addition, they are often using
specialized bulky hardware that are economically impractical as
presence sensor. This paper targets the limitations of previous work
by leveraging the pervasive WiFi infrastructure and the wireless
multipath reflections.

Another research line focuses on sensor fusion such as combi-
nation of electrical energy demand, water usage, and number of
wireless devices connected to theWiFi network [4]. However, these
techniques are not always reliable specially for the elderly as they
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maynotwear or carry devices all the time, or large familieswithmul-
tiple wireless devices that may be left behind. However, we believe
that these techniques are excellent complimentary technologies to
M-WiFi and can be opportunistically used for training upon avail-
ability to perhaps further minimize or reduce user data labeling.

2.2 Sensing usingWiFi CSI.
Channel State Information (CSI) measured fromMIMO-OFDM

WiFi packets has been widely used for different sensing applica-
tions. CSI captures the key information about howwireless signals
propagate between transceivers, subject to small-scale multipath
fading. This makes it extremely sensitive to changes in the envi-
ronment including human motion and activities. We can categorize
this previous work into two main approaches: threshold-based, and
learning-based sensing. Threshold-based methods [28] reduce the
measurement vector to a singlemetric that can detect humanmotion.
These metrics are either defined based on temporal signal variations
or signal correlation in the frequency domain[14]. However, these
solutions are limited to human motion and cannot detect human
presence specially in during periods of stationary activities.

With the advancements in supervised and deep learning tech-
niques, more recent works focus on learning-based approaches [25].
These systems apply a data-driven mechanism by defining intrinsic
features of the CSI in the presence of human and use a large CSI
database for training from the empty room and human motion. Un-
fortunately, theCSI is inherently dependent to thephysical space and
the staticmultipath propagations, so it is challenging to obtain stable
features that are immune to environment dynamics [6]. Additionally,
all of these techniques are tested in lab environments [12, 29] using
powerful server-class computers, which are far from cost-effective
for most real-world systems. These limitations motivated us to de-
velop a user-in-the-loop self-tuning framework that takes the CSI
dependency to the physical space and limited hardware resources
into account.

2.3 Sensing Domain Adaption
In the machine learning community, domain adaptation is a well-

known solution for reducing the difference between source and tar-
get featuredistributions, thus improvinggeneralizationperformance.
In the context of WiFi sensing, domain adaption provides consistent
high accuracy and robustness to environmental dynamics. Recent
WiFi-based sensing systems leverage domain adaption for environ-
ment independent gesture recognition [30], activity detection [7, 31],
or people counting [3]. However, existing methods usually assume
cloud access for retraining and adapting themodels andwould strug-
gle tooperate on resource constrainedplatforms.Occupancy sensors,
specially for HVAC control, must be low-cost, user transparent, and
extremely accurate to encourage user adoption, especially in residen-
tial applications where consumersmay reject automated technology
solutions that result in uncomfortable living conditions. In this paper,
wemainly focusonminimizinguser involvement indomainadaption
while providing real-time and on-device computation. We borrow
techniques from computer vision and object detection [5] to enable
WiFi domain adaption in edge computing environments by only
adapting shallowmodel knowledge to the new environment. Never-
theless, ourproposed framework iscompatiblewithdifferent transfer
learning algorithms and can be extended to other techniques.

Figure 1: System overview.

3 SystemOverview
M-WiFi consists of three main components:

(1) Features for increased coverage and sensitivity. One com-
mon limitation for existing RF-based sensing techniques is cover-
age: the size of the area that can be covered with a given number
of nodes. Themain challenge is that theproperties of the received
signal are dominated by objects in the Fresnel zone of the line of
sight path, resulting in a linear sensing region despite the omni-
directional nature of the antennas. Our proposed solution will
enhance the sensing coverage by taking advantage of multipath
reflections that are common in indoor environments. We define
a pseudo super-resolution algorithm that captures the signature
of wireless multipath profile for a new space.

(2) Human presence detection and pet filtering. By combing
multipath profile and signal measurements in three dimensions
of time, space, and frequency, M-WiFi is capable of identifying
the signature of a human body in the roomwhether moving or
stationary, both in LoS and non-LoS. In addition, we differentiate
between pets and humans by capturing differences in body types
and motion patterns in our training data set. We empirically
combined handcrafted features that create unique signatures for
humans and pets.

(3) Learning at the edge. In addition to the human body, geom-
etry of the physical space is a key factor in defining wireless
multipath propagation. Therefore, to generalize a human sens-
ing system across different physical environments, we at least
need to capture the multipath profile of the new environment
to calibrate the model. However, this necessitates (1) learning at
the edge due to large volume of data (2) annotated data from the
new space. To address these requirements, we exploit transfer
learning techniques that allows us to adapt a general model to
a new domain, in this case a specific house.
In the next sections, we elaborate on each of these components

and explain howM-WiFi addresses the required robustness, general-
ization, and real-time operation of a practical human sensing system.
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Figure 2: CSI variations under different occupancy scenarios

4 Enhancing Coverage and Sensitivity
The goal ofM-WiFi is to use thewirelessmesh created bymultiple

WiFi nodes to directly sense the human body in the home. The key in-
novation ofM-WiFi is the ability to resolve and analyzewirelessmul-
tipath signals between each transmitter and receiver, increasing both
the spatial coverageandsensing sensitivity.Complex indoor environ-
ments cause wireless signals to propagate along multiple paths, re-
flecting off ofwalls, furniture, and people, as shown in Figure 1. Each
of these paths reveals information about a different part of the phys-
ical environment. M-WiFi resolves these multipath signals and an-
alyzes them individually, using each path as an independent sensor.

The basic approach is to use the Channel State Information (CSI)
provided by modern commercial WiFi cards to deduce key fea-
tures for the dominant multipaths such as their power, Angle-of-
Arrival (AoA), and Time of Flight (ToF). In the following sections, we
first explain the required pre-processing onCSI amplitude and phase
and then elaborate on how to extract the wireless multipath profile.
Next, we define the feature set which allows us to provide more ac-
curate estimation of the stationary occupancy and also differentiate
humans from pets.

4.1 Pre-processing
The CSI provided by commercial WiFi cards includes the intro-

duced signal attenuation and phase shift due to the wireless channel
between aWiFi transmitter and receiver. The CSI collected in our
WiFi devices includes 56 frequency sub-carriers for 2 transmitting
and 2 receiving antennas, which includes the received signal from
all paths.

Figure 2 shows an example of the CSI amplitude variations over
time (across the x axis) and over multiple frequency and antennas
(across the y axis). The occupancy state of the house changes over
time as labeled in the figure.Aswe can see, theCSI amplitude can eas-
ily capture the large human movements due to significant temporal
variations ofmultiple paths. However, when the home is unoccupied
or occupied by a stationary occupant (e.g. sleeping), there is nearly
no temporal variations. The presence of people is only detectable
if they are in the Fresnel zone of theWiFi link, in which the human
body creates either a newwireless reflections or it blocks some of
the existing reflections. For example, the first standing scenario in
figure 2 happens in the LoS of the WiFi link, thus creating a new
pattern compared to empty room, in frequency and spatial domain.

To address this problem, we leverage CSI phase information be-
cause it is dramaticallymore sensitive to smallmovements. However
phase can not be used on its own since it is prone to arbitrary errors
caused by Packet Detection Delay (PDD) and Sampling Frequency

Offset (SFO). To address this issue, we calculate the relative phase
between antennas instead of using the absolute values. The intuition
is that the radio front-end inWiFi nodes is shared between phased
antenna arrays, so the offsets are constant across the antennas. By
calculating the relative phase, we still have the same level of infor-
mation but free of arbitrary offsets. Now the CSI relative phase and
amplitude can be used to calculate the spatial multipath components.

4.2 ExtractingWireless Multipath Profile
M-WiFi’s approach to resolve multipath profile builds on well-

established noise-subspace methods [15] and joint-estimation tech-
niques [8, 18] to fuse data frommultipleWiFi antennas and subcar-
riers. The basic idea is to resolve multipath components using phase
shifts across the antenna arrays, which is a function of AoA (𝜃 ), or
the expected phase shift across subcarriers due to ToF (𝜏). So, for a
measurement matrix𝑋 across the antennas and subcarriers,

𝑋 (𝑡)= [𝑥1,1 (𝑡),..𝑥1,𝐾 ,𝑥2,1,...,𝑥𝑀,𝐾 (𝑡)]𝑇 =𝑎(𝜃,𝜏)𝑠 (𝑡)+𝑁 (𝑡) (1)

the expected phase shift is denoted by 𝑎(𝜃 )

𝑎(𝜃,𝜏)= [1..Ω𝐾−1 (𝜏),Φ(𝜃 ),...,Ω𝐾−1 (𝜏)Φ(𝜃 ),...,

Φ𝑀−1 (𝜃 ),...,Ω𝐾−1Φ𝑀−1 (𝜃 )]
(2)

where𝑀 is the number of antennas,𝐾 is the number of frequency
subcarriers, 𝑠 (𝑡) is the received signal vector at the first antenna and
𝑁 (𝑡) is the noise vector. To extract the AoA and ToF of multipath
signals, the conventional approach is to perform eigenvalue decom-
position on the covariance matrix 𝑋𝑋𝐻 to extract the noise and
signal subspace and then find the steering vectors that are orthogo-
nal to the noise subspace. However, this method is computationally
heavy as it involves large matrix calculations and exhaustive search
over the entire solution space. On the other hand, for a practical and
real-time human sensing system, the entire inference and learning
process has to operate at the edge given the volume of generated
CSI data. So, it should be compatible with limited resources and
hardware constraints.

To address the trade-off between high fidelity features and com-
putational overhead, we define a pseudo super-resolution algorithm
that captures the essence ofmultipath profilewithout going through
the entire exhaustive search process. The basic idea is to define in-
termediate features that capture the signatures of multipath signals,
but it does not require to be the final AoA, ToF, or Doppler estimates
of each path.We define algorithm 1, which calculates the covariance
of themeasurementmatrix and then reduces the feature space to the
top eigenvalues of the covariance matrix on three dimensions of fre-
quency (for ToF estimates), space (for AoA and AoD estimates), and
time (for Doppler estimates). The number of selected eigenvalues
correspond to the number of dominant paths in the environment.
To further reduce the computational cost of this algorithm, we use
the Implicitly Restarted Arnoldi method [9], which is best suited for
sparse matrices. It iteratively calculates the top eigenvalues without
requiring large memory or computationally heavy vectorization.

5 HumanDetection and Pet Filtering
A recently proposed technique [10, 17, 25] has been demonstrated

to identify multipath reflections from a moving person based on its
phase incoherence with other signals. However, this technique can
only detect large movements such as walking. Other recent studies
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Algorithm 1 Pseudo super-resolution algorithm
Inputmeasurement matrix X(N,M,K,T)
Output Feature set F

1: for i=1:2 do ⊲ transmitting antennas
2: Flatten the first three

dimensions of𝑋𝑡𝑒𝑚𝑝 [(𝑀×𝐾)×𝑇 ],𝑋𝑡𝑒𝑚𝑝 = 𝑓 𝑙𝑎𝑡 (𝑋 (𝑖,,,),2)
3: 𝑐𝑜𝑟𝑟𝑠 𝑓 =𝑋𝑡𝑒𝑚𝑝𝑋

𝐻
𝑡𝑒𝑚𝑝 ⊲ Corr across freq and space

4: 𝑐𝑜𝑟𝑟𝑡 =𝑋
𝑇
𝑡𝑒𝑚𝑝𝑋

𝑇𝐻
𝑡𝑒𝑚𝑝 ⊲ Corr across time

5: Add top P eigenvalues of Corr to feature set
6: 𝐹←𝑒𝑖𝑔(𝑐𝑜𝑟𝑟𝑠 𝑓 ,𝑃)
7: 𝐹←𝑒𝑖𝑔(𝑐𝑜𝑟𝑟𝑡 ,𝑃)
8: return feature set F

have shown that WiFi signals can be used to detect human respi-
ration [13] and even heartbeat [11] by filtering for disturbances at
specific frequencies. However, these approaches are only effective if
the people are completely still and in the LoS path.M-WiFi combines
these techniques and extracts three main groups of features to also
detect intermediate levels of activity (sitting or standing) that are not
detected by either of the other two: (1)Doppler shift caused by amov-
ing (e.g. walking) person, (2) Attenuation and reflections caused by
a stationary (e.g. sitting or standing) person, (3) Frequency-specific
disturbances caused by a completely still (e.g sleeping) person.

In addition, to differentiate pets from humans, M-WiFi trains on
differences derived from body type such as size and breathing rate.
Cats and most dogs will create only a small fraction of the RF dis-
turbance that the human body creates, due to being approximately
1/5th the height and body mass, or less. However, a moving animal
will have a similar effect as a stationary person. To differentiate these
two, we develop new fusion techniques to measure features over
both frequency and space, and are scanned over time. For example, a
moving animal will create low signal disturbance but high Doppler
values and will affect a changing set of paths, while a stationary
person will create low signal disturbance with low Doppler values,
affecting only a fixed set of paths. Still petswill be differentiated from
humans based on respiration rate. The next section summarizes the
full set of handcrafted features.

5.1 Feature Set
In summary, M-WiFi defines four categories of features resulting

in a total of 94 features:
• MultipathProfile: eigenvalues of theCSI covariancematrix over
receiving antennas, transmitting antennas, and subcarriers.
• Temporal Features: eigenvalues of the covariance matrix for
successive CSI measurements over time.
• Frequency-specific Features: entropy of CSI amplitude and rel-
ative phase across subcarriers of different antennas.
• Minor Channel Variation: attenuation and reflections caused
by a moving or stationary person. This is done through channel
variation factor defined as:

𝑣 =

√
𝑣𝑎𝑟 (𝑋 )

1
𝑇

∑𝑇
𝑡=1 |𝑥𝑡 |2

(3)

where𝑋 is the CSI vector for𝑇 packets, and 𝑣𝑎𝑟 (𝑋 ) is the variance
of vector 𝑋 . The denominator represents the RMS value of the

vector𝑋 . We calculate the channel variation factor for every sub-
carrier of every antenna and then apply the aggregate functions
(mean, median, max, min, std) across subcarriers. The resulted
features carry the channel variations in both frequency and time
dimensions and are calculated for every antenna pair.

5.2 Model Training
To study the generalizability of M-WiFi, we start by developing a

“General Model” with the goal of automatically detecting occupancy
in any environment without any user input. In practice, this will
rarely reach the expected performance goals because it is impossible
to generalize the size and geometry of every home. For example, a
single home in some configurations could be sliced up into three
different apartmentswhichwould dramatically change the detection
requirement for a system installed on a single floor.

To understand the potential performance gap, we first investigate
what we expect to be the best-case model in terms of performance,
“Specific Per-House Model”, where we collect and train data individ-
ually on each residence. This is clearly too labor intensive for most
users, but it gives us a sense for the performance lost in our gener-
alized model. This then leads to our proposed framework, “Domain
Adaptive Model”, which uses the generalized model and augments
it with a small amount of training data through a transfer learning
approach. The domain adaptive model is explained in more detail
in the next section.

6 Domain Adaptation at the Edge
Wireless signal propagation is tightly coupled with the physical

environment such as the house layout, furniture placements and
the position of theWiFi nodes. To detect the presence of a person
inside the room, we at least require the knowledge of this profile.
However, it is practically impossible to generalize the multipath
profile of different indoor spaces. M-WiFi addressed this issue by
using transfer learning to tune a pre-trainedmodel to a new building
by using a small amount of annotated data from the new house.

However, such model adaptation necessitates two main require-
ments. First, given the multi-dimensional CSI data and the large
sampling rates, we can not assume cloud access to perform this
retraining and tuning. To make our approach more amenable to
resource-constrained targets, we use a wrapper method which com-
putes the model with a certain subset of features and evaluate the
importance of each feature using the training data. Note that this
process is performed offline in pre-deployment phase, so it does not
affect the real-time performance of the system.We repeat a similar
process for pruning the classification model. The second require-
ment is that retuning the model involves annotating data and thus
interaction with the house occupants. On one hand, the more data
we can label form the new house, the faster we can tune the model
and achieve the expected performance. On the other hand, frequent
requests to the occupants for annotation causes user frustration and
inconvenience. So, the goal is to minimize the user involvements by
only annotating high fidelity data.

M-WiFi starts operating in a new house by using a generalized
model trained pre-deployment with a large annotated dataset from
different houses. Over the first few days of deployment, the system
detects the potential occupancy changes and asks the user to an-
notate a small amount of data, which is then used for tuning the
generalized model. M-WiFi repeats this retuning process in the case
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Algorithm 2 Change Point Detection Algorithm

Input feature set {𝑦 𝑗,𝑡 }𝑇

1: stopping
criterion=Number of required break points(𝑝),grid size 𝛿 =2

2: for feature index j=1:𝑁𝑓 do
3: signal={𝑦 𝑗,𝑡 }𝑇
4: Initialize 𝐿𝑗←{𝛿,2𝛿,...,( [𝑇 /𝛿]−1)𝛿}
5: while stopping criterion is met do
6: 𝑘←|𝐿𝑗 | ⊲Number of breakpoints
7: 𝑡0←0 ⊲Dummy variables
8: Denote by 𝑡𝑖 (𝑖 =1,...,𝑘) the elements of𝐿𝑗 ,𝐿𝑗 = {𝑡1,...,𝑡𝑘 }
9: Initialize𝐺 𝑗 a (𝑘−1)-long array. ⊲ list of gains
10: for 𝑖 =1,...,𝑘−1 do
11: 𝑐 (𝑥𝑖=𝑚,...,𝑛)=

√∑𝑛
𝑖=𝑚 (𝑥𝑖−𝑥)2×(𝑛−𝑚)

12: where 𝑥 = 1
𝑛−𝑚

∑𝑛
𝑖=𝑚𝑥𝑖

13: 𝐺 𝑗 [𝑖−1]←𝑐 (𝑦𝑡𝑖−1:𝑡𝑖+1 )− [𝑐 (𝑦𝑡𝑖−1:𝑡𝑖 ) +𝑐 (𝑦𝑡𝑖 :𝑡𝑖+1 ) ]
14: 𝑖←𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝐺 𝑗 [𝑖 ]
15: Remove 𝑡𝑖̂+1 from 𝐿𝑗 .
16: [𝐿𝑚𝑎𝑗 ,𝑐𝑜𝑛𝑓 ]=𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒 (𝐿1:𝑁𝑓

)
17: 𝐿𝑓 𝑖𝑙𝑡 =𝐿𝑚𝑎𝑗 (𝑐𝑜𝑛𝑓 [𝐿𝑚𝑎𝑗 ]>0.5) ⊲ Confidence filtering
18: for 𝑖 =1: |𝐿𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 | do ⊲ Proximity filtering
19: if |𝐿𝑓 𝑖𝑙𝑡 (𝑖+1)−𝐿𝑓 𝑖𝑙𝑡 (𝑖) | ≤𝜏 then
20: Remove 𝐿𝑓 𝑖𝑙𝑡 (𝑖+1) from 𝐿𝑓 𝑖𝑙𝑡

Output set 𝐿𝑓 𝑖𝑙𝑡 of estimated changepoint indexes

of detecting a change inWiFi link conditions such as displacement
of theWiFi transceivers or significant furniture movements. In the
next section, we elaborate on howM-WiFi selects the candidate time
periods for annotation.

6.1 Occupancy Transition Detection
Thenaiveapproach fordataannotation is toask theuser toprovide

a detailed report about their home occupancy during a deployment
phase. In practice, this is too labor intensive and potentially error
prone. Instead, M-WiFi uses an unsupervised algorithm to detect
the potential occupancy transitions and select the candidate time
periods with rich sensing information. This process not only op-
timizes the user involvement, but also reduces the user error by
helping them remember their activities for a specific time period.
The intuition is that transition from occupied to unoccupied in a
building is accompanied with large movements of occupants (when
leaving or entering the house) which appear as abrupt changes on
feature values. However, the transition between activities, such as
from sleeping to walking, could also result in abrupt changes and so
it can be verified by asking the user to annotate the selected periods.

To detect the potential occupancy transitions, M-WiFi collects
wireless signals and extracts features on the fly for a given time win-
dow. The extracted features are then stored locally during the day
creating a multivariate time series signal. After capturing this signal
for the entire day, M-WiFi applies an offline change point detec-
tion algorithm that chooses the best possible segmentation using a
Buttom-up technique [22], explained as Algorithm 2. The algorithm
starts by splitting the signal in equal windows of size 𝛿 and sequen-
tiallymerging themuntil only𝑝 change points remain. At every step,

Figure 3: Experimental Setup

all potential change points are ranked by the gainmeasure defined as:

𝐺 (𝑖−1)=𝑐 (𝑦𝑖−1:𝑖+1)−[𝑐 (𝑦𝑖−1:𝑖 )+𝑐 (𝑦𝑖:𝑖+1)] (4)

𝑐 (𝑦𝑖=𝑚:𝑛)=

√√
𝑛∑
𝑖=𝑚

(𝑦𝑖−𝑦)2×(𝑛−𝑚) (5)

where𝑦 is the time-series signal, 𝑐 is the cost function defined based
on the standard deviation of the signal every 3 sequential change
points. The changepointswith the lowest gain𝐺 are deleted until the
stopping criterion (here the number of requested change points) is
met. This process is essentially pruning the initial change point vec-
tor bymergingmultiple segments. The sameprocesswill be repeated
for all the features, resulting in 𝑝 selected change points per feature
index. Finally, M-WiFi applies two heuristics to select the final list of
candidate time periods for annotation. First, it performs a majority
voting across features and selects the change points that are common
between at least half of the features. Second, it applies a proximity
filtering to ignore periods shorter than a threshold. The idea is max-
imize the amount of annotated data for a given annotation request
to user. We define this threshold to be 1 hour in our experiments.

7 Evaluation
7.1 Implementation

M-WiFi consists of twomainhardware components: (1) aHubCol-
lection Unit, and (2) aWiFi client, both are TPLink N600 OpenWRT
platforms and equipped with Atheros WiFi chipsets, 2 antennas,
128MB of memory, 8GB of local storage, and a 560MHzMIPS 74Kc
CPU. We use the CSI tool [24] installed on the hub to obtain the
CSI phase and amplitude values of 56 sub-carriers for each received
packet per antenna, resulting in a 2x2x56 CSI matrix. During the
data collection, the hub queries any active client at a specific rate
and extracts the CSI information from the received responses. In
addition, to avoid interferencewith the background traffic, the nodes
coordinate to operate on a WiFi channel with minimum possible
interference. Most of the data collections are performed in 5GHz
frequency band employing an unused 40MHz channel. We later
show that the detection performance is independent of the operating
frequency or wireless channel and the system can operate in both
2.4 or 5GHz frequency ranges.
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Figure 4: Domain Adaptive performance converges within a few
days with an average of 4.5 annotation requests to the user.

Weexploreddifferent classificationmodels rangingbetweenSVM,
decision tree, random forest, KNN, boosted trees, and Multilayer
Perceptron. Our empirical results show that Multilayer Perceptron
works best for this type of data, given the diversity of occupancy
scenarios and the complex relationships in the data. The results
provided here are all based on a 2 layer MLP classifier.

7.2 Experimental Setup
We deploy M-WiFi in 7 different homes and a total of 25 different

setups, ranging from a small apartment to single houses with mul-
tiple rooms and pets. Participants were given no special instructions
and followed their routine activities and home occupancy functions.
The homes include both single-person and multi-person occupants
and the people living in the home include students, professionals,
and homemakers. The floorplans for the test spaces, along with the
locations of the hub (green) and the client (purple) are shown in
Figure 3. The duration of data collection varies between houses, re-
sulting in a total of 100 days-worth of data. The summary of each
home conditions are presented in Table 1.

To collect the ground truth, we used a wireless motion activated
video cameras that is placed on the outside of all entrances to the
home. For this, we used a Netgear ARLO video capture system, since
it is battery operated and can run without external internet access1.
The captured videos are analyzedmanually on aweekly basis to gen-
erate a file containing occupancy status and timestamps for which
this status is held. In addition, we performed over 100 controlled
experiments for system debugging, which are short-termmeasure-
ments of the environments with specified human activities such as
unoccupied, occupant sitting still, lying down, walking randomly,
or pet presence. These datasets are used in the sensitivity analysis
to demonstrate the signatures that the models are learning.

1The experiments are conducted under appropriate IRB approvals

Houses Type of # of # of # of # of
house People Pets Rooms Days

H1 Town 1 0 5 14
H2 town 2 2 dogs 5 7
H3 Town 1-5 0 2 9
H4 Single 1-5 1dog 2cat 6 21
H5 Apt 1 0 4 15
H6 single 2 2 dogs 4 9
H7 single 3 2 cats 4 24

Table 1: Experimental Setup

Figure 5: the generalized baseline model performs poorly in new
houses due to the lack of multipath profile data (a), but it reaches
a steady state performance after few days of augmentation (b)
with an average of 98% accuracy, which is comparable to our
high-performance baseline (c) with 93% accuracy but much worse
run-time performance (Table 2)

(1 day worth of data) M-WiFi MUSIC-based baseline
execution time 2.9 hours 23.7 hours

Table 2: M-WiFi shows an 8x runtime performance compared with
aMUSIC-based approach at a fraction of thememory.

We target the estimation of human sensing over 5-minute in-
tervals, so the features are calculated using a sliding window of 5
minute length with 50% sliding overlap. We discuss the impact of
window size on the system performance in the sensitivity analyses.
Sensor sampling between our hub and client devices will occur at
a rate of 10Hz to capture subtle movements. We also define accuracy
as (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ), given true/false positive and
negative cases.

7.3 Detection Performance
To evaluate our proposed system, we first provide the detection

accuracy for the “Domain AdaptiveModel”, which represents the ex-
pectedperformancewhen the system is installed in a completely new
house. We show that we can tune the generalized model to the new
housebyusing incremental training for as fewas3daysworthofdata.

To better understand the effectiveness of this approach, we com-
pare the detection accuracy between the generalized model (zero
augmentation), steady-state model (specific per-house) and a high-
performance model and resource hungry MUSIC algorithm (hard
to imagine running on embedded targets in the near future). For the
generalized model, we use a leave one house out approach, where in
each iteration the data from one house is entirely used for testing
and the data from the rest of the houses are merged as training set.
This equivalentswith the expected performance of the systemon the
very first day of deployment with zero augmentation. In the steady-
state mode, we train and test the model for each individual house
using 5-fold cross validation. This provides the long-term steady
state performance, where the multipath profile of the environment
is fully captured by the models over time. This gives us a sense of
the expected performance in the long run by gradually learning the
multipath profile using our proposed transfer learning method.

7.3.1 Domain Adaptive Model Performance We evaluate M-
WiFi’s performance in a realistic scenario, where the classification
models are trained with a large dataset from multiple houses and
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(a) House A

(b) House B

Figure 6: CSI phase carries distinctive patterns for pets and moving
objects compared to the human body.

Figure 7: the distinctive PCA distributions of the two occupancy
classes confirm the effectiveness of the handcrafted features.

testedonacompletelynewhousewith theadditionof sparseaugmen-
tation. In each iteration, we leave one dataset out for testing and use
the rest as training set. Then, we gradually add partially annotated
data from the test house to tune the general model. Figure 4 shows
the impact of this sequential learning as the model receives more
augmented data. We can see that the model tunes to the new house
and achieves higher accuracy over time. With an average of 3 days’
worth of data, M-WiFi can achieve around 90% true detection, and
less than 15% false detection. It should be noted that the self-tuning
duration mainly depends on the volume of annotated data and can
be shortened if the users can label more data. In addition, since the
transfer learning is applied in real-time and on-device, the system
can still detect the occupancy in the initial days of deployment and
during the domain adaptation phase.
7.3.2 Steady-state Performance Next, we compare the steady-
stateperformancewith twobaselines:generalizedmodel, andMUSIC-
based learning. Generalized model uses leave one house out and zero
augmentation, in which an average true positive of 84% and true
negative of 28% is achievable. The reason for the weak performance
of the generalized model is the lack of multipath profile knowledge
for the test houses. So, without any augmentation and the multipath
profile of the environment, the model has a hard time detecting the
unoccupied periods. This demonstrates the importance of multipath
signals and the tuning process on robust human sensing.

Steady-state mode shows the model performance in long term
when enough the domain adaptation converges to steady perfor-
mance.For this, giventheshortdurationof somedatasets,weemulate
this scenario by training and testing for each individual house using
5-fold cross validation. As shown in Figure 5, M-WiFi can achieve

Figure8:Usererrorsondataannotationdelays themodeladaptation.

around98%accuracy in correctly detectingoccupied andunoccupied
states. It should be noted that occupants in each house had their regu-
lar activities during the experiments and the datasets include periods
of inactivity (suchasduringperiodsof sleepingorwatchingTV), pets
alone at home, or moving furniture around the house. So, we can see
that the proposed framework is robust to all these corner cases. We
further studied themiss-classifications and realized that themajority
of false positive and false negatives occurred at the occupancy tran-
sitions. This is mainly due to inaccurate timestamps in ground-truth
data and can be easily handled by post-processing or biased toward
occupied or unoccupied depending on the application objectives.

We also compare the steady-state performance with the MUSIC-
based baseline [17], which also uses multipath profile but without
resource constraint considerations.We see thatM-WiFi performance
is comparable to the baseline, while it achieves 8X higher runtime
performance (Table 2).

7.3.3 Underlying Signatures To better understand the underlying
reason for the robustness of M-WiFi, we performed extensive con-
trolled experiments with known human activities. In these exper-
iments, a single user enters an apartment and performs different
occupancy scenarios such as sitting, lying, and walking for a fixed
period of time both in LoS and NLoS of the WiFi nodes. We also
perform different experiments with moving objects such as fans and
vacuum cleaner, or pets (with and without the presence of a person
inside the house). Figure 6 shows a snapshot of CSI relative phase
between receiving antennas for different scenarios such as having
a pet (here a medium size dog) alone at home or a moving fan.We
can see that the moving Roomba or the dog has minimal effect on
the CSI measurements. Due to the size and their unique movement
patterns, the wireless reflections are disturbed minimally compared
to when a person is inside the house. However, a moving fan close
to theWiFi nodes can create a distinctive pattern in wireless reflec-
tions because of the height and metallic surface. The self-tuning and
self-calibration module of M-WiFi detects such potential occupancy
transitions that are unknown to the model and adapt it accordingly
through user verification.

While visualizing all the features is not possible due to the large
dimensions, we apply PCA on the feature set to study the effective-
ness of feature engineering. Figure 7 shows the variations of the
first principal component across 10 equally sized time periods in
two different houses. The labels on the x axis are in this format:
"period#-Occupancy#", where the first parameter shows the time pe-
riod number and the second parameter shows the occupancy of the
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Figure 9: Change point detection performance used to identify time
periods that users should label

house during this time period (0 for unoccupied and 1 for occupied).
As we can see, the PC distributions are quite distinctive between
the two occupancy classes, which confirm the effectiveness of the
handcrafted features in distinguishing the two classes.

7.4 Self-tuning Performance
In the previous section, we saw that the Domain Adaptive Model

reaches the steady-state performance after a few days of data aug-
mentation. However, this process relies on the users’ input to verify
and annotate the tuning data, whichmay not be accurate all the time.
Some users may forget when exactly they left the house or come
back, or they may enter the wrong labels. So, to evaluate the impact
of user error on model tuning, we imitate these errors by randomly
selecting some candidate time windows in each iteration of domain
adaptation and assigning either "unknown" or the opposite labels
to the tuning data. As we can see in Figure 8, even in the presence
of user errors, the model can reach the steady state, but with a lower
slope. This indicates that it may require longer augmentation phase
to reach the expected performance.

7.4.1 Transition Detection Performance Another component
of the self-tuning algorithm is to detect potential occupancy changes
and send the candidate timeperiods to theuser for labeling.However,
it is possible that the change detection algorithm confuses changes
in the occupants’ activity with occupancy transitions. For example,
transition from sleeping to daytime activity could be detected as a
potential occupancy changewhile in both cases thehome is occupied.
For a better performance of the system, we expect near zero false
negatives in change detection, but higher false positive is acceptable
as it only increases the number of requests to the user. However, this
defines a trade-off between user comfort and system performance.

One parameter to control this trade-off is the initial number of
change points. With a larger initial value, the algorithm can find
change points more accurately, but at the expense of larger number
of false positives.Weevaluate the impact of this parameter on change
detection across all the houses for windows of 24 hours. as shown
in Figure 9, we found the best trade-off to happen at initial change
point equal 10, which results in detection rate of 93% in exchange of
50% false positive. This corresponds to an average of 5 verification
requests to users in a 24 hour period. It should be noted that M-WiFi
only requests for user input in the first days of deployment for a
maximum of a week, and does not need to repeat this regularly after
the deployment phase. So, the goal here is to further reduce the
user discomfort in the deployment phase by improving the system
performance as fast as possible.

Figure 10: Memory usage and execution time for different sampling
rate and timewindow sizes

7.5 Workload Benchmarks
One of the main features of M-WiFi is its ability to perform the

entire pipeline of feature extraction, learning, and detection on an
embedded platform with limited resources. The most significant ex-
ecution time andmemory usage factor is the size of the timewindow
for which the features are extracted along with its corresponding
sampling rate. As shown in Figure 10, the larger the time window is,
the higher memory and execution time can be expected. However,
even with a time period of 5 minutes, the average memory usage is
110MB, which is practically achievable onmost application class em-
beddedplatforms.This efficiency isprimarilydue to theoptimizedset
of handcrafted features andM-WiFi’s ability to extract these features
on the fly. In addition, the average time to execute feature extraction
and classification is always smaller than the corresponding time
window, whichmeans that the data collection and processing can be
efficiently paralleledwith zero runtime overhead. Therefore,M-WiFi
can reliably run on any embedded platform in real time.

7.6 Wireless Co-existence Testing
Oneconcern is that addingadditionalwireless trafficmight impact

existing home networks or that stray signals from neighbors might
cause interference. In order to measure the impact of our system on
the existing wireless ecosystem, we run speed tests before, during
and after our experimentation period in order to detect any network
performance side effects. We observe the average packet loss rate
of 0%, 0.5% and 4% for 1, 10 and 100Hz sampling rates, respectively.
Therefore, 10Hz sampling rate seems to be the sweet spot for both
the network and system performance.

It should be noted that M-WiFi’s framework is capable of auto-
matically switching to a wireless channel with the least background
traffic to further minimize interference. To understand the impact of
channel switchingondetectionperformance,weperformedanexper-
iment in one of the houses, where the systemwas running on a 5Ghz
wireless channel for 5 days and then switched to 2.4Ghz for the next 3
days. We used the 5Ghz data for training and 2.4Ghz data for testing.
We observe that the model correctly detects the human presence
with 91% accuracy. This confirms that the feature vector and the clas-
sification model are channel independent and so the sensing system
can seamlessly transition to any availablewireless channel if need be.

7.7 Impact of TimeWindow Size
The time window size used for feature extraction is another fac-

tor affecting M-WiFi performance. Wemeasure the average human
presence accuracy for different window sizes of 1, 5, and 10 minutes.
We can see that the accuracy slightly reduces as we increase the
window size (98.6%, 97.7%, and 96.1%, respectively). This is due to
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the aggregate functions applied on raw data for feature extraction.
However, very small window sizes can increase the computational
cost of the system due to higher rate of feature extraction execution.
So, we select 5 minutes as the best window size to balance system
and runtime performance.

8 FutureWork and Conclusion
This paper presents a domain adaptive model for WiFi human

presence detection with learning capabilities at the edge. We show
that our proposed baseline model with some additional input from
the user can achieve high levels of accuracy on completely unseen
environments, even in the presence of pets and moving objects. In
our future work, we plan to explore howM-WiFi can interact with
spatial features to further improve the performance in long periods
of motionless occupancy (like when sleeping). We believe that the
last known location of motion (potentially a motion trajectory) can
be used as a hint to determine the home occupancy. Using sparse
training of locations during the installation step of the system, mo-
tion can be potentially classified into a few discrete zones within
the home, which can be used to construct the geographical model
of transition zones.
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