
Lumen: A Framework for Developing and Evaluating ML-Based
IoT Network Anomaly Detection

Rahul Anand Sharma†, Ishan Sabane§, Maria Apostolaki†⋄, Anthony Rowe†, Vyas Sekar†

†Carnegie Mellon University, §IIT Madras, ⋄Princeton University

ABSTRACT
The rise of IoT devices brings a lot of security risks. To mitigate
them, researchers have introduced various promising network-
based anomaly detection algorithms, which oftentimes leverage
machine learning. Unfortunately, though, their deployment and
further improvement by network operators and the research com-
munity are hampered. We believe this is due to three key reasons.
First, known ML-based anomaly detection algorithms are evaluated
–in the best case– on a couple of publicly available datasets, making
it hard to compare across algorithms. Second, each ML-based IoT
anomaly-detection algorithm makes assumptions about attacker
practices/classification granularity, which reduce their applicability.
Finally, the implementation of those algorithms is often monolithic,
prohibiting code reuse. To ease deployment and promote research in
this area, we present Lumen. Lumen is a modular framework paired
with a benchmarking suite that allows users to efficiently develop,
evaluate, and compare IoT ML-based anomaly detection algorithms.
We demonstrate the utility of Lumen by implementing state-of-the-
art anomaly detection algorithms and faithfully evaluating them
on various datasets. Among other interesting insights that could
inform real-world deployments and future research, using Lumen,
we were able to identify what algorithms are most suitable to detect
particular types of attacks. Lumen can also be used to construct
new algorithms with better performance by combining the building
blocks of competing efforts and improving the training setup.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Machine learn-
ing; • Networks→ Network security; Network security; • Se-
curity and privacy→ Intrusion detection systems.

ACM Reference Format:
Rahul Anand Sharma†, Ishan Sabane§, Maria Apostolaki†⋄, Anthony

Rowe†, Vyas Sekar† , †Carnegie Mellon University, §IIT Madras, ⋄Princeton

University, . 2022. Lumen: A Framework for Developing and Evaluating
ML-Based IoT Network Anomaly Detection. In The 18th International Con-
ference on emerging Networking EXperiments and Technologies (CoNEXT
’22), December 6–9, 2022, Roma, Italy. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3555050.3569129

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9508-3/22/12.
https://doi.org/10.1145/3555050.3569129

1 INTRODUCTION
IoT devices are everywhere, with an estimated 75 billion devices
deployed by 2025 [2]. While IoT devices have huge potential, they
come with attendant security challenges. In fact, IoT devices often
become entry points into critical infrastructures and/or leak sensi-
tive information [16, 23, 36–38]. Traditional security approaches
(e.g., antivirus, software patches) are often not suitable for IoT
devices due to vendor security, management practices [3, 8] and
constrained hardware.

Network-layer anomaly detection [11, 13, 18, 27, 40, 41] tailored
for IoT devices offers a pragmatic alternative for IoT security. This
is based on two key insights. First, network gateways (e.g., IoT
hubs) act as a natural “chokepoint” for inspecting traffic to/from
IoT devices. Second, by nature, IoT devices exhibit fairly constrained
normal behavior, unlike general-purpose user computers, and this
normal behavior can potentially be captured using machine learn-
ing (ML) models. Indeed, we have seen a plethora of ML-based
network-layer IDS (NIDS) for IoT devices [11, 13, 15, 18, 20, 24, 26–
28, 30, 40].1

We qualitatively and quantitatively analyze a wide spectrum of
prior work in this space and identify three key shortcomings:

• Limited evaluation:ML-based IoT IDS are typically evaluated
only on a couple of datasets, and thus there is no guaran-
tee that they will generalize. While limited evaluation is a
well-known problem for any ML-based system, it is further
amplified in IoT due to the lack of public datasets. In fact,
we find that most of the datasets used in published works
are private and created by the authors of the corresponding
work.

• Implicit deployment assumptions: EachML-based IoT anomaly-
detection algorithm makes unique assumptions about the
attacker’s practices; thus, there is little common ground for
comparison. For example, some IDS are tailored to only de-
tect certain types of attacks or assume that the attacker’s
traffic has a common source IP prefix [15].

• Inextensible: Most IDS are designed in a monolithic man-
ner; thus, there is little chance for code reuse and further
optimizations. Worse yet, there are few open-source deploy-
ments that one can build upon or reproduce results.

Taken together, these shortcomings impact both the state of
academic research and that of practice. For instance, practitioners
cannot quickly test existing algorithms in practice or have well-
defined playbooks to deploy these ML approaches in new settings.
At the same time, researchers cannot rapidly prototype new ap-
proaches or faithfully compare those with prior work.

1For the rest of the paper, we use the term IDS and NIDS interchangeably, noting that
our scope is restricted to network-layer IDS.

https://doi.org/10.1145/3555050.3569129
https://doi.org/10.1145/3555050.3569129


CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

These factors motivate us to develop a common development
framework and a benchmarking suite. The common development
framework will facilitate rapid prototyping, code reuse, and allow
easy comparison between algorithms. The benchmarking suite will
facilitate fair and comprehensive comparison among algorithms
under common assumptions that will be easier to interpret. The
combination of the two will give the research community clarity
on the precision of the various algorithms, their shortcomings, and
the most promising research directions going forward.

Although intuitive, designing a development framework is not
trivial due to the heterogeneity of algorithms and datasets. As
an intuition, today’s algorithms are too complex to be expressed
using existing general-purpose development frameworks such as
netML [39]. Moreover, publicly available datasets contain various
attacks, are collected in heterogeneous networks, and are labeled
at varying granularities. In effect, selecting a relevant and compat-
ible dataset to test an algorithm requires understanding both the
algorithm’s working and the dataset collection process.

To solve this problem, we rely on two key insights. First, al-
though most algorithms have separate workflows, we identify a
common abstraction and use this to create a modular development
framework. This modularity facilitates efficient deployment and
testing. Concretely, we optimize multiple algorithms at the same
time by optimizing each module (used by multiple algorithms) in-
dependently. Moreover, we construct the evaluation pipeline such
that intermediate results are shared across algorithms. Second, we
observe that an ML-based anomaly detection algorithm can only be
faithfully tested against a dataset that is of the same classification
granularity (or can be transformed into that granularity).

We demonstrate the usability of our framework by implement-
ing 16 state-of-the-art algorithms. Using this implementation and
our benchmarking suite, we compare the algorithms and report
multiple actionable insights. Finally, we demonstrate the power of
our modular framework by using it to automatically synthesize
new algorithms by combining modules from existing work. Our
automatically generated algorithm can achieve higher precision
than any of the previously proposed works.

In summary, our paper makes the following contributions:

(1) A detailed literature search on ML-based IoT anomaly de-
tection systems and identification of the factors that hinder
systematic comparison across them.

(2) The design and implementation of Lumen: a modular frame-
work to develop ML-based IoT anomaly detection algorithms
and a benchmarking suite to evaluate them. The combina-
tion of the two facilitate (i) fast implementation of ML-based
IoT anomaly algorithms; (ii) faithful evaluation on multiple
datasets; (iii) comparison across algorithms; and (iv) guid-
ance for future algorithm design.

(3) An implementation and head-to-head comparison of 16 al-
gorithms on 15 datasets using Lumen.

(4) The design of two newLumen-guided heuristics which demon-
strates better precision compared to existing algorithms. The
heuristics combine modules from existing algorithms and
leverage an optimized training setup.

2 PRIORWORK & LIMITATIONS
IoT ML-based anomaly detection has been a very active research
area in recent years. There exist multiple algorithms that aim to
identify anomalous IoT behavior using machine learning [11, 15, 18,
20, 24, 26, 27, 30]. In this section, we first describe a taxonomy of
ML-based anomaly detection algorithms. Next, we put ourselves in
the shoes of an operator and identify three shortcomings that hinder
the deployment and further improvement of existing algorithms.
2.1 Taxonomy of prior work
The goal of an IoT anomaly detection algorithm is to distinguish
between malicious and benign IoT traffic. To this end, a typical ML-
based anomaly detection algorithm defines a feature-engineering
pipeline and an ML training and testing pipeline. The feature-
engineering pipeline consists of operations to convert network
traffic to a feature vector. Popular methods for feature engineer-
ing include applying statistical aggregates (e.g. mean packet inter-
arrival time, median packet length), and grouping packets (e.g.
based on source IP or destination IP). Each feature vector is clas-
sified as benign or malicious (label). The training pipeline takes
as input the set of feature vectors along with their corresponding
ground-truth labels (in the case of supervised classification) and
learns a model that can predict if a given feature vector corresponds
to benign or malicious traffic. The ML model can be as simple as
passing feature vectors over to a Decision Tree or more complicated
e.g. autoencoders or deep neural networks.

Despite their common high-level goal and approach, we find that
IoT ML-based anomaly detection algorithms can greatly differ in
their (i) scope (e.g. deployment type, targeted attacks); (ii) solution
specifics (e.g. features, ML model, classification granularity); and
(iii) evaluation methodology (e.g. datasets, testing pipeline).

While one could study these algorithms considering any of those
differentiators, we review them grouped by their classification gran-
ularity. As we explain in §2.2, the different classification granularity
hinders faithful comparison across algorithms and is critical to our
work. We distinguish three common granularities (i) packet; (ii)
unidirectional flow and (iii) connection.

Packet-level algorithms independently classify each packet as
malicious or benign. This is the finest granularity possible. While
more flexible such algorithms can be less scalable (as they might
need per-packet inference or rules). Representative examples of
this category include nPrint [20], which proposes a new unified
packet representation or feature that can be used for any ML task.
It builds a feature vector using packet fields from various lay-
ers. SmartHome [11] converts each packet to a packet description
markup language (PDML). Kitsune [27] is a classical anomaly de-
tection algorithm that generates packet-level features by grouping
packets based on criteria such as source IP address, channel, socket,
and computing 1D and 2D statistical features. ML_DDoS [18] in-
troduces an ML model built using IoT network variables such as
bandwidth, packet interval, protocols, packet size, and destination
address for DoS attack detection.

Unidirectional-flow-level algorithms classify each unidirectional
flow as anomalous or benign. A unidirectional flow is a set of pack-
ets with common tuple of srcIP, dstIP, srcPort, dstPort, and proto-
col [24, 30]. While this classification granularity is less flexible, it is



Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

Algorithm ML Model Granularity Datasets Reported Performance
ML for DDoS [18] Ensemble of RF, SVM, DT and KNN Packet Custom Precision: 99.9%

Efficient One-Class SVM [40] OCSVM and GMM Packet CTU IoT, UNB IDS, MAWI AUC: 62 - 99%
Kitsune [27] Stacked Auto-Encoders Packet Custom Camera Traffic Precision: 99%
Nprint [20] AutoML Packet CICIDS2017, netML Balanced Precision: 86-99%

Smart Detect [24] Random Forest Unidirectional Flow CICIDS2017, CIC-DoS Precision: 80 - 96.1%
Network Centric Anomaly Detection [15] Auto Encoder Flow: srcIP, dstIP Custom 2 Precision: 99%

Industrial IoT [41] Random Forest Connection Custom Sensitivity: 97%
Smart Home IDS [11] Random Forest Packet Custom Precision: 97%

Ensemble [30] NB,DT, RF and DNN Unidirectional Flow UNSW NB-15, NIMS Precision: 98.29-99.54%
Bayesian Traffic Classification [28] Bayes Classifier Connection Custom Precision: 96.29%

Zeek Logs [13] RF Connection CTU Precision: 97%
Table 1: List of network-layer ML-based anomaly detection algorithms for IoT devices. The heterogeneity in the algorithms’
design (e.g. classification granularity) and evaluation (e.g. used datasets)make directly comparing the reported precision values
meaningless.

intuitive and practical as it assumes access to a single direction of
traffic. SD-IoT [24] proposes to build a DDoS detection algorithm
using features from IP and TCP layer fields. Ensemble[30] proposes
to build features from the MQTT, DNS, and HTTP protocols.

Connection-level algorithms classify and build features at the
connection level (i.e., bidirectional flow). This is the coarsest gran-
ularity for which we find algorithms. For instance, OCSVM [40]
proposes creating a feature for each flow based on the first hundred
packets’ inter-arrival times and lengths. IIoT [41] creates an IDS
system customized to SCADA systems by building features based
on packet time, length, raw bytes, bandwidth, packet loss, and jit-
ter. BayesianIDS [28] proposes building features from 248 per-flow
discriminators combined with a naive Bayes classifier.

Classification algorithms naturally work with a coarser granu-
larity than their original but not with a finer one. For example, a
packet-level algorithm classifies at a packet granularity and thus
can be trained with a flow-granularity dataset as we can propagate
the flow label to all packets of each flow. Yet, a connection-level
algorithm cannot be trained with a packet-granularity dataset be-
cause there will be connections that contain packets with both
labels; thus, one would need to change the ground-truth data.

2.2 Limitations of prior work
In this subsection, we explain the inefficiencies of previous ML-
based IoT anomaly detection algorithms that hinder deployment,
comparisons, and future advances. To illustrate our point, we put
ourselves in the shoes of a network operator who wants to deploy
such an algorithm.

Example Scenario Consider an operator who wants to implement
an anomaly detection algorithm in their small business to detect
brute force and DoS attacks on IoT devices. To this end, the operator
turns to research work in the field, with the aim of finding the
most suitable algorithm for their needs. Assume that the operator
performs a literature search resulting in a comparative table similar

2uses publically available benign traces and private attack traces

to Table 1. Next, we explain the challenges the operator would face
to identify and build upon the most accurate algorithm.

Literature search is inconclusive, meaning that an operator re-
viewing previous works has no guarantee that a given algorithm
will be accurate in practice in their deployment or at least more ac-
curate than others. As we see in Table 1, each algorithm is evaluated
on a few datasets; thus, there is no guarantee that it generalizes
to different conditions (on different datasets). Worse yet, many of
those datasets are private and/or introduced by the same paper
which introduces the algorithm. Moreover, there is very little reuse
of datasets in papers. As an illustration, Fig. 1a shows the number
of direct comparisons that are possible for each given algorithm. A
comparison is possible when two algorithms have been evaluated
in at least one common dataset. Notably, for half of the algorithms
that we reviewed, there is no possible comparison.

Implicit assumptions in the algorithm design hinder their
faithful comparison. As literature search alone does not allow
comparisons, an operator could try to implement and compare dif-
ferent algorithms internally. At first sight, such a methodology is
straightforward and will allow the operator to compare various
algorithms on the same dataset. In practice, however, evaluating
various algorithms is extremely challenging and time-consuming.
First, most of the works do not have publicly available codes. To ad-
dress this, the operator could focus only on evaluating open-source
algorithms, despite the risk of dismissing superior algorithms. Un-
fortunately, that does not make the evaluation easier, as many
authors have not publicly released their datasets. To address this,
the operator could use publicly available datasets. Unfortunately,
doing so is not straightforward because each algorithm is designed
assuming that training and testing are done at a particular gran-
ularity, as we explain in §2. For instance, if the labels of a dataset
are per packet, but the algorithm classifies traffic at the connection
granularity, then training is not possible. Indeed, one would need
to either modify the labels of all packets corresponding to a single
connection to match or remove all connections whose packets do
not hold the same label over time (either benign or malicious). In



CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

(a) Comparing algorithms using the
literature-reported precision is not feasi-
ble because they are not evaluated on the
same datasets.

(b) The precision of the tested algorithms
varies widely across datasets, showing
their lack of generality, even when trained
and tested on data from the same dataset.

(c) The variance in precision of the tested
anomaly detection algorithms further de-
grades (compared to Fig.1b) when they are
tested and trained on different datasets.

Figure 1: An operator cannot faithfully compare (even open-sourced) IDS algorithms due to their limited evaluation, implicit
assumptions, and/or monolothic system designs.

either case, one would be forced to evaluate an algorithm on a
modified dataset, effectively influencing the results.

Monolithic designprevents reusing, improving, and/or learn-
ing from existing algorithms. Even after the operator has found
an implementation of some algorithms and a couple of datasets to
evaluate them, comparing them can be a rather confusing task. As
an illustration, Figures 1b,1c show the precision of various algo-
rithms when evaluated under a pair of training and testing datasets
from the same and different sources, respectively. Unfortunately,
even after all this work, the operator cannot decide which algo-
rithm is more suitable. First, each algorithm displays a wide range
of precision values. Second, some algorithms (e.g. A00) are good
when trained and tested on the same dataset (Fig. 1b), but their
performance significantly degrades if they are trained and tested on
different datasets (Fig. 1c). Finally, the operator might not be able
to evaluate how relevant each dataset is to their own deployment.

Overcoming these limitations requires the operator to debug
some of the cases or understand the workings of each algorithm
and extract their key insights. The operator’s burden could be
reduced if the algorithms were implemented and evaluated more
systematically such that the operator would be able to reason about
their differences, root causes for performance degradation, and
improvements.

3 FRAMEWORK: LUMEN OVERVIEW
As we explain in § 2.2 various inefficiencies impact both the state
of academic research and that of practice. For example, an operator
or researcher cannot answer seemingly straightforward questions
such as:Which is the most accurate IoT ML-based IDS? Does it gen-
eralize to other deployments? How does my new algorithm compare
to the state-of-the-art? In this section, we first define the output of
Lumen (§3.1), before we elaborate on its workings.

3.1 Overview
As illustrated in Figure 2, Lumen consists of a development frame-
work and a benchmarking suite. Lumen works in three logical steps,
which can run one after the other or independently.

The first step facilitates rapid prototyping and is useful if the user
wants to invent a new algorithm or extend the framework. Lumen
takes as input the programmer’s specification of a new anomaly
detection algorithm as a sequence of operations among those that
Lumen has defined and optimized. As a result, the use of Lumen can
speed up the implementation of a new algorithm while reducing
the burden of debugging, testing, and optimizing the individual
components.

The second step facilitates fair comparison amongst algorithms.
Leveraging its benchmarking suite and its pre-compiled algorithms,
Lumen compares across a considerable subset of the related liter-
ature and under a variety of conditions. The user can scope the
comparison on a subset of algorithms or datasets.

In the last step, Lumen stores all results in a query-friendly
format and generates illustrations, effectively facilitating multiple
tasks. First, Lumen illustrations can help an operator easily identify
the most suitable algorithm to deploy considering their needs, net-
work deployment, or attacks of interest. Second, Lumen output can
help a researcher or developer to identify interesting patterns that
could lead to better algorithms or just compare their algorithms
with state-of-the-art alternatives with minimum overhead.

While there has been some work with similar goals [1, 12, 20,
33, 39], they are not addressing the inefficiencies we described in
§ 2.2. First, such works such as “netml” [39] are not expressive
enough to develop complex feature-building pipelines that exist in
the literature, such as Kitsune [27] IDS. Moreover, such works do
not provide an evaluation framework or benchmarking suite and
thus cannot be used to compare across algorithms. Finally, while
some competitions on applying ML to networking data [5] have



Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

been organized, they include very few datasets and do not provide
direct access to packet captures.

Figure 2: Lumen enables comprehensive comparison across
a variety of algorithms and datasets. Lumen modular de-
sign allows (but does not require) a user to describe a new
anomaly-detection algorithm and compare it with the state-
of-the-art with minimum overhead.

3.2 Lumen development framework
We design Lumen to be a development framework that supports the
features used by all previously-proposed algorithms and speeds up
the prototyping of new algorithms. To achieve this we (i) identify
the most commonly used operations; (ii) optimize these operations;
and (iii) facilitate arbitrary connections across them. Doing so
allows code reuse, reduces potential bugs, and improves overall
performance.

Identifying commonly used operationsWe did a thorough lit-
erature search and meta-analysis of various published algorithms
and publicly available codes. We observe that previously proposed
algorithms vary widely in terms of (i) their classification granular-
ity (e.g. packet-level or connection-level); (ii) the packet fields that
they use (e.g. TCP sequence number, or destination IP address); (iii)
how they build useful features (e.g. mean packet interarrival time,
median packet size); and (iv) how they are fed to an ML model for
classification(e.g. Random Forest, Autoencoder followed by a deep
neural network).

Despite the variety, we recognized an emerging pattern that
led us to identify a set of operations that are repeatedly used in
various algorithms. These include around 30 unique operations such
as extracting fields, time slicing, grouping, computing aggregates,
feature normalization etc.

Our operations are configurable; thus, each operation can, in
practice, support multiple functions. Having configurable imple-
mentation of these operations allows us to have fewer efficient im-
plementations, effectively reducing debugging and testing efforts.
Moreover, fewer implementations allow us to do further optimiza-
tions. Upon implementation, we realize that most of our operations
are amenable to a map-reduce type of framework. To make our
framework scalable, we have optimized many of these operations
to use parallel and distributed python frameworks.

We used these modules to implement 16 algorithms as we de-
scribe in §5. As an illustration, Figure 3 shows the logical pipeline
of the Kitsune classification algorithm [27]. To implement this algo-
rithm, we need operations to extract packet fields (size, time), group

data (by srcIp) , apply aggregate functions (bandwidth, number of
dstIP), etc. The extraction of size and time is served by the same
module and requires a single pass over the dataset.

Figure 3: Kitsune classification algorithm that does packet-
level classification. The proposed features are developed by
applying aggregate functions (mean packet size, bandwidth,
mean packet inter-arrival time) to packets, packets grouped
by srcIP, and based on a sliding time window.

Flexible connections across operations While the configurable
already gives us enough flexibility, we need a way to define the
order in which the operations are connected to compose a logical
pipeline.

As an intuition, in our previous example in Fig,3 we not only
need to define the operations but the connections across them: e.g.
output from a groupby operation (based on srcIP) needs to be fed
to a time slicer operation (10 seconds) that needs to be fed into an
aggregator operation to create a feature vector that is ultimately
fed to an ML classifier operation.

To enable arbitrary connections across operations, we introduce
a simple template-based language, which allows the programmer
to create a configuration by only filling in the gaps on a template
pipeline to file. An example of such a file is illustrated in Figure 4.

To achieve this, we extend the Lumen operations to include
their input and output. Thus each operation in the template is a
configurable operation and has an input, output, and algorithm-
specific parameter. The input and output of each operation can
either be packets or packets grouped by a particular attribute.

After the user configures a new algorithm using the template
file, the file is passed to an execution engine. The execution engine
verifies the file’s syntax (e.g. type checks) before executing it. To
further help the user, Lumen identifies the operations that need
further optimizations. To this end, the execution engine generates
plots of memory and time spent in each operation. The execution
engine also does some basic memory optimizations, such as remov-
ing variables/data that are not used in future operations to conserve
memory.

Algorithm configuration example Let’s go through an example
to understand how an algorithm can be written using our develop-
ment framework. Our template file (Figure 4) starts with a “Field
Extract” operation, and we specify what packet fields we want to
extract. The set of extracted packet fields is then grouped based on
source IP by operation “Groupby”. For each group of packets, we
can then compute aggregate functions using the “ApplyAggregates”
operation. We then specify that we want to use a Random Forest



CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

classifier using our “model” operation, and finally, the training is
performed by the “train” operation.

To validate the generality and usability of our development
framework, we have ported over 16 existing algorithms. Observe
that each of these algorithms has very distinct characteristics. For
instance, they have different classification granularities, different
ways of building features (nprint, zeek, wireshark pdml [6]), etc.
Importantly, our framework is also extensible, meaning that it can
be easily modified to support new modules with minimal changes.

3.3 Lumen evaluation framework
We design Lumen to be a framework that can faithfully run a variety
of algorithms on publicly available datasets, meaning the framework
should honor the design decisions of the designer (benchmarking
suite). Such a framework would facilitate fair comparisons among
algorithms and provide actionable insights.

We are not aware of any publicly available evaluation framework
addressing this requirement. There have been some competitions
on applying ML to networking data [5] but they (i) provide a set
of already extracted packet fields or features, and (ii) does not
provide direct access to packet captures, effectively constraining
the possible algorithms.

Evaluating various algorithms on a variety of publicly available
datasets is challenging due to the mismatch in classification granu-
larities of algorithms and the granularities of the dataset. We cannot
faithfully run a packet classification algorithm on a flow classifi-
cation dataset and vise-versa. Further, interpreting the precision
difference of algorithms is challenging due to multiple possible
choices of metrics (e.g. accuracy vs. precision vs. recall), multiple
datasets, multiple attacks etc..

Lumen addresses these challenges in two ways. First, Lumen
distinguishes datasets according to their classification granularity
and the included attack types. Doing so allows Lumen to only eval-
uate algorithms faithfully and to analyze results considering the
differences across datasets, effectively allowing better interpreta-
tion. Second, Lumen stores all results in a query-friendly format;
and displays the most useful results in a compact manner (using a
heatmap). Doing so Lumen does give not only actionable guidance
to a non-expert but also provides adequate data for further analysis
and refining.

4 IMPLEMENTATION
In this section, we describe Lumen’s implementation details, includ-
ing the collection of datasets.

4.1 Implementation Details

Framework We implement Lumen in Python (3.8) and evaluate it
on a 4-machine cluster, with each machine having 64GB of memory.
We use pypacker [7] to parse pcap files and memory-profiler [4]
to profile the memory consumption of each module. We use vari-
ous machine-learning libraries such as Pandas [25], Tensorflow [9],
Sklearn [31], Ray [29], and Modin [32] for distributed Python pro-
cessing.

Benchmarking suite: We selected 15 datasets from the 16 algo-
rithms we surveyed. Each of these datasets is used at least once in

Figure 4: For prototyping, a Lumen user only needs to fill a
template that describes the corresponding logical pipeline.
Then, Lumen take over the heavy lifting of compiling the
algorithm to actual code, evaluating it on various datasets,
and comparing it with state-of-the-art.

a peer-reviewed network ML-based anomaly detection algorithm.
Our benchmarking suite contains both packet-level classification
datasets: Kitsune, AWID3, and IEEE IoT network intrusion dataset,



Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

Figure 5: Heatmap illustrating the precision achieved by running the different algorithms on detecting particular attacks. To
calculate the precision score of algorithm Y and an attack X, we use results from running algorithm Y on the subset of datasets
that contain the attack X. Gray squares correspond to cases for which we did not have a dataset that contained the attack and
on which we could faithfully run the algorithm. Certain algorithms (greener squares) are particularly good (higher score) at
a subset of the attacks but are not accurate in others.

and connection-level classification data sets: CICIDS 2017, CICIDS
2019, and the CTU IoT dataset. Next, we explain how we prepro-
cessed the different datasets before using them in Lumen.

• CICIDS 2017 [34]: This dataset includes two forms (i) packet
captures (pcaps) with flow labels; and (ii) a CSV file with
pre-extracted features. We found that the flow labels gen-
erated using CICFlowmeter (v3) tool in the dataset were
incomplete and/or misleading (e.g., no AM/PM information
with 12-hour times). Thus, we combine the pcaps and textual
descriptions to recreate an accurate CSV format. We believe
that our methodology is more accurate and fair to other algo-
rithms. We then use Zeek to split large packet capture into
corresponding flows and label them following the provided
flow labeling schema.

• CICIDS 2019 [35]: We use the labeled ground-truth data to
understand flow labeling schema and use Zeek to split the
packet capture into corresponding flows.

• CTU [19]: We run our Zeek-flow extraction and matched
our Zeek-flows with the labeled Zeek-flows provided in the
dataset based on flow timestamps.

• Kitsune [27]: We have the ground-truth label that specifies
each packet as malicious or benign.

• IEEE IoT [22]: We apply the provided Wireshark filters to
split packets into malicious and benign packets.

• AWID3 [17]: We decrypt provided 802.11 packets using the
provided keys and then apply the provided Wireshark filters
to split packets into malicious and benign.

4.2 Implementation Challenges
We summarize some of the implementation challenges of Lumen
and how we address them.

Large volume of traffic captures The captured traffic dataset
can be huge, containing more than 100 million packets. Training
an ML model in finite time with such a large number of packets
is not trivial. Even open-source frameworks such as “nprint” fail
with large pcap files. For instance, Segfault fails on a pcap file with
500,000 packets on a server-grade machine with 64Gb memory.
Fortunately, we observe that many of the operations are inherently
parallelizable. For example, extracting packet headers could be
parallelized by splitting a pcap into smaller chunks, and building
features could be parallelized by building each feature separately.
To scale up our framework and speed up the pipeline, we integrated
our framework with an open-source distributed parallel Python
framework, “Ray” [29].

Unclear hyperparameters The lack of documentation of some
of the implementation details in many of the algorithms made it
difficult to replicate them. Indeed, the performance of an algorithm
can be heavily influenced by the choice of hyperparameters, such
as the number of leaf nodes in a random forest classifier or the loss



CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

Figure 6: Lumen facilitates rapid prototyping and advancements. Straightforward heuristics such as merging datasets (rows
A08, A09, A13, A14) and exploring the performance improvement from combining previously-used features andmodels (rows
AM01, AM02, AM03) already improves the precision we measure across different attack types compared with the precision of
existing algorithms evaluated in various datasets, shown in Fig.5. For this experiment, we only plot the connection classifica-
tion algorithms and evaluate only on connection level datasets

function used to train a deep neural network. For those algorithms
in which the hyperparameters were not specified, we use default
parameters.

We have open-sourced our framework at https://github.com/
rahul-anand/Lumen .

5 LUMEN IN PRACTICE
Our framework allows us to investigate the performance of various
proposed algorithms across multiple datasets (§5.3). Concretely,
we investigate the existence of an optimal algorithm for anomaly
detection, the extent to which algorithms generalize across de-
ployments, and the dependence of an algorithm’s performance on
the training dataset. Further, we demonstrate the potential of our
framework in facilitating advancements in the field. Concretely, we
leverage Lumen to improve the training of existing algorithms and
even synthesize a new algorithm by combining pieces of previous
work. We find that these heuristics can increase the precision of
the algorithms by 4-27% (5.4).

5.1 Methodology
In this subsection, we summarize our evaluation dimensions:

• Algorithms (Table 2):We implement 16 algorithms using
Lumen.

• Datasets (Table 3): Many of the datasets e.g. CICIDS in-
clude packet captures from multiple days containing dif-
ferent types of attacks. We treat each day’s trace as a new

dataset. We have ten connection-level classification datasets
and five packet-level classification datasets.

• Training method: We use two methods: (i) same dataset, in
which training and testing data are from the same dataset;
and (ii) cross dataset, in which training and testing data are
from distinct datasets.

• Granularity: We run and compare algorithms faithfully, i.e.,
connection-level classification algorithms are trained/tested
against connection-level datasets and packet-level classifica-
tion algorithms on packet-level datasets.

• Metrics: For each algorithm and training-testing combina-
tion pair, we compute its precision and recall score. The
precision score denotes the number of times an algorithm
classified the connection/packet as anomalous, and it was
indeed anomalous. The recall score denotes the number of
anomalous connection/packets identified correctly out of
the total anomalous connection/packets.

5.2 Validating the correctness of Lumen
For most of the algorithms, we don’t have access to the original
source code, and many are not evaluated on the datasets that Lumen
includes. The performance of an algorithm can vary drastically
depending on the choice of hyperparameters, training/testing splits,
etc. Moreover, no paper reports performance when training and
testing data are from the same dataset. Thus, it is impossible to have
a direct one-to-one comparison between Lumen and the original

https://github.com/rahul-anand/Lumen
https://github.com/rahul-anand/Lumen


Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

Algorithm Description
A00 [18] ML DDoS
A01 [20] nprint1: All
A02 [20] nprint2: tcp + udp + ipv4
A03 [20] nprint3: tcp + udp + ipv4 + payload
A04 [20] nprint4: tcp +icmp + ipv4
A05 [11] IDS smart_home
A06 [27] Kitsune
A07 [40] OCSVM
A08 [40] Nystrom+ GMM
A09 [40] Nystrom + OCSVM
A10 [24] smartdet
A11 [15] nokia
A12 [21] early detection
A13 [28] Bayesian
A14 [13] Zeek
A15 [41] IIoT
AM* Modified Algorithms

Table 2: Algorithms

Data Description
F0 CICIDS 2017, Tuesday
F1 CICIDS 2017, Wednesday
F2 CICIDS 2017, Thursday
F3 CICIDS 2019, 01-11
F4 CTU, 1-1
F5 CTU, 20-1
F6 CTU, 3-1
F7 CTU, 7-1
F8 CTU, 34-1
F9 CTU, 8-1
P0 IEEE IoT dataset
P1 Kitsune
P2 AWID3

Table 3: Datasets

Table 4: Algorithms and datasets used for evaluation

implementations for all tests. To validate the correctness of Lumen
we follow two steps.

First, we validate that the features that Lumen calculates against
match those that the original implementation or an alternative
one calculates for a subset of our algorithms. For algorithms A01-
A04 [20], we use the “nprint” (version 1.2.1) tool to generate features
corresponding to each packet. We compare the features extracted
by Lumen for algorithms A01-A04 with the “nprint” tool, and the
features match exactly. Next, we directly feed these features into a
random forest model. We find that our implementation of A06 (Kit-
sune) matches exactly with the author’s provided implementation1.
For A10 (smartdet) the authors have provided a script2 to extract
features. We find that Lumen’s features match exactly, also in this
case.

Second, we compare the Lumen-calculated accuracy scores against
those reported, for some subset of the algorithms and datasets. We
find that Lumen is very close to the reported in many of the tested
cases, but not in all. We believe the variance is largely due to the
selection of hyperparameters. For algorithm A10 [24], which is
evaluated on dataset F1 (CICIDS 2017 DoS), authors report 99% pre-
cision; Lumen also achieves 99% precision for the same algorithm
and dataset. For A14 [13], which is evaluated on a combined dataset
of F4-F9 (CTU IoT dataset), authors report mean precision score
of 99.9%; Lumen also achieves mean precision scores of 99.6%. For
algorithm A07 [40] and datasets F0-F2 (CICIDS 2017), the authors
report 78.6% AUC score; while Lumen achieves 66% AUC score. For
algorithm A07 [40] and datasets F4-F9 the authors report AUC of
75% ; while Lumen achieves an AUC score of 49.2%.

5.3 Observing state-of-the-art

Q1: Which algorithm has the best performance across all
training and testing scenarios?

To answer this question, we first find the maximum precision/re-
call score that was achieved by any algorithm for each pair of
training-testing datasets. Next, for each training-testing pair, we

1https://github.com/ymirsky/Kitsune-pyg
2https://github.com/irini90/pcap_preprocessing

calculate the difference between the maximum precision/recall (i.e.,
by the best algorithm for the particular pair) and the precision/recall
score achieved by each algorithm.

We plot the precision and recall differences grouped by the algo-
rithm in Figure 7a. An optimal algorithm would have been a line
at “Y==0” as it would have achieved the best precision and recall
on all training-testing datasets. Algorithms A05 and A06 may seem
like good candidates for the best algorithm, but they can run only
on a small number of datasets due to their classification granu-
larity. We observe that there is no single best algorithm that can
achieve the highest precision or recall across the board. We see
that the algorithms A1-A4 are generally good for packet classifica-
tion as their precision difference from optimal algorithm is close
to zero. We see a massive variation in the accuracy of connection-
level-classification algorithms, partially due to more connection
classification datasets in our Framework.

Observation 1 There isn’t a single algorithm with the high-
est precision or highest recall score for all training/testing
scenarios (Figure 7).

Q2: How robust are proposed algorithms under different
datasets?

To answer this question, we run each algorithm under two cases.
In the first case, we split a single dataset to generate the training and
testing datasets. We repeat the process with multiple datasets. In the
second case, we use distinct datasets for training and testing. Again
we run for multiple pairs of datasets. In both cases, we faithfully
evaluate algorithms: we only run algorithms with datasets of the
same classification granularity to avoid affecting their precision.

Figure 8 illustrates the precision and recall score across algo-
rithms for the first case (i.e., test and train on single datasets) while
Figure 9 for the second case (i.e., test and train on the different
datasets). As expected, the precision and recall scores in the former
case are much higher overall. Yet, even in this case, we observe that
for 8 out of 16 algorithms, there is at least one dataset where the al-
gorithm precision score is lower than 20%. Clearly, those algorithms
do not generalize well.

Observation 2 When trained and tested on data from same
source: the precision of 8/16 algorithms and recall of 4/16
algorithms drops below “20”% for at least one data set. When
trained and tested on data from different sources: the preci-
sion and recall of 16 of the 16 algorithms drops below “20”%
for at least one data set.

Q3: Does the selection of the training dataset affect the pre-
cision of a given algorithm?

To answer this question, we plot the median precision and recall
achieved by all algorithms on a particular combination of a training
dataset (X-axis) on a test dataset (Y-axis) in Fig.10. Naturally, the
diagonal, corresponding to training and testing on data from the
same dataset, results in better median precision and recall. We also
observe that the precision and recall scores are asymmetric for

3Algorithm A05 can only run on a single dataset, so we cannot do the evaluations
with distinct training and testing datasets.

https://github.com/ymirsky/Kitsune-pyg
https://github.com/irini90/pcap_preprocessing


CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

(a) Precision Scores

(b) Recall Scores

Figure 7: We plot the absolute difference between the preci-
sion and recall of the best-performing algorithm on a given
combination of training and testing datasets and each al-
gorithm on the same combination. Lower values indicate
precision closer to the best algorithm. Since there is no sin-
gle algorithm with always zero difference, there is no algo-
rithm that is better than all others across training and test-
ing dataset pairs. We group algorithms by their classifica-
tion granularity (per-packet vs. per-flow).

a particular training-testing pair, indicating that certain datasets
are better for training than others (greener columns), and some
datasets are more challenging (more red rows). Finally, we also see
some particularly interesting datasets, such as dataset “F5” (Torii
attack from CTU). We observe that none of the training datasets
are able to generalize to dataset F5 (in terms of precision scores),
but a model trained on dataset F5 is able to generalize to others.

Observation 3 Strategically selecting the training dataset
leads to a more accurate anomaly detection model.

(a) The precision scores of some (8 out of 16) algorithms drop by more
than 20%, at least for one dataset, evenwhen they are trained and tested
on the same dataset. This denotes that the pseudo-code designs them-
selves don’t generalize for some algorithms on particular datasets.

(b) Recall scores of some (4 out of 16) algorithms drop by more than
20%, at least for one dataset, even when they are trained and tested on
the same dataset.

Figure 8:We plot each algorithm’s precision and recall score
when they are trained and tested on the same dataset.

Q4: Is there an optimal algorithm for each attack?
While we have observed precision differences among algorithms

and pairs of training and testing, we have, so far, little understanding
of the reason. One hypothesis is that certain models are especially
good for certain attacks. To test this hypothesis, we focus on the
per-attack precision of various algorithms. Figure 5 illustrates the
precision of each algorithm in identifying the packets of a particular
attack only. Thus, to calculate the value of a square corresponding
to an algorithm Y and an attack X, we use results from running
algorithm Y on the subset of datasets that contain the attack X.

We observe that certain attacks are more effectively identified
by a few algorithms. For example, DoS attacks are best identified by



Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

(a) Precision Scores

(b) Recall Scores

Figure 9: We plot each algorithm’s3 precision and recall
score when they are trained and tested on different datasets.
For all algorithms, the precision and recall score drops by
more than 80% when trained on one and tested on other
datasets.

A15 (smartdet [24]) because the algorithm selects features such as
rate of change of TCP flags, entropy of source ports, and standard
deviation of IP length, which are naturally expected to change
during a DoS attack. We also observe that 802.11 Wireless attacks
(Death, Eviltwin, etc.) from the AWID3 dataset are hard to detect
for any algorithm as the 802.11 packets do not contain IP headers,
and as such only A06 can run on it, and that too with very low
precision scores.

Observation 4 The precision of a given algorithm is highly
affected by the attack contained in the training/testing
datasets.

(a) Precision Scores

(b) Recall Scores

Figure 10: We plot median precision and recall across algo-
rithms per combination of training (X-axis) and testing (Y-
axis) datasets. Precision and recall scores are asymmetric for
a particular training-testing pair. For instance, training on
F5 and testing on F6 results in a 90% precision score, while
training on F6 and testing on F5 results in only a 19% preci-
sion score.

5.4 Improving state-of-the-art
Having a clearer understanding of the state-of-the-art algorithms,
we test the ability of our framework to guide improvements. To this
end, we experiment with two intuitive techniques. First, we aim
to improve the training of different models by merging datasets.
Second, we aim to improve the models themselves by combining
ideas from existing approaches. We illustrate our results in Fig.6.

First, we experiment with the idea of training algorithms on a
combination of all training datasets without increasing the size of
the training set. Thus, for each classification granularity, we gener-
ate a new dataset by concatenating 10% of data from each dataset.
We use the same approach to generate a testing dataset. Finally, we
compute the algorithm’s precision score on the common testing



CoNEXT ’22, December 6–9, 2022, Roma, Italy Rahul Anand Sharma et al.

dataset. This intuitive approach already improves the precision
scores by 12-27%, as we observe in the first three rows of Fig.6

Second, we experiment with the idea of mixing features from
existing algorithms. Concretely, we do a greedy brute-force search
over the space of used features and ML models. We then evaluate
each of the candidate algorithms using our benchmarking suite. To
reduce the search space, we complement existing pipelines with
ML techniques that typically improve the performance of classi-
fiers, such as data normalization, removing correlated features, and
autoML. This simple brute-force search already reveals algorithms
with higher precision scores than those of the previous work. Con-
cretely, we are able to find an algorithm with a 4% better average
precision score than the proposed prior works.

Observation 5 Simple heuristics such as training on merged
datasets and combining algorithms, improve the precision
score of the algorithms by 4-27%.

6 DISCUSSION AND FUTUREWORK

Better new algorithm generation: A new algorithm can be au-
tomatically constructed by combining the operations that we have
implemented in our framework. Black-box optimization techniques
such as Bayesian optimization could be used to find a new algorithm
in a more systematic way.

Automatic hyper-parameter tuning with Lumen: Techniques
from grid-search or bayesian optimization could be used to automat-
ically find the best hyper-parameters for anMLmodel. Lumen could
be easily integrated with various automatic hyper-parameter tun-
ing frameworks such as Ray-tune [29], Optuna [10], HyperOpt [14],
etc.

Extending the framework to other ML tasks outside of IoT
anomaly detection: Although the focus of this paper is on anom-
aly detection algorithms for IoT devices, our proposed framework
is, in fact, more general. Our framework can be used to develop and
evaluate any ML algorithm on network data. For example, if we
were to extend our framework to do ML-based device classification,
we would only need to add a new dataset to our framework, and
the rest of the functions/modules would be used directly.

Understanding relevant features for each attack type: Lumen
can also be used to understand the relevant features for each attack
type or deployment.

7 CONCLUSION
In this paper, we design and implement a framework that allows for
rapid prototyping, efficient evaluation, and fair comparison among
multiple previously proposed algorithms for ML-based network-
layer IoT anomaly detection. Paired with a benchmarking suite, our
framework allows us to gain insights regarding the performance
and generality of various algorithms. Moreover, our framework
allows us to invent new training strategies and algorithms that
draw from previously suggested ones and can already improve
the precision in various testing scenarios. We have open-sourced
Lumen to help operators and also inspire further innovation.

8 ACKNOWLEDGEMENT
We thank our shepherd, Zahaib Akhtar, for his help with the fi-
nal version of this paper, as well as the anonymous reviewers for
their detailed comments. This work was supported in part by NSF
award CNS-1564009 and C3.ai DTI research award; the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA; and by
the U.S. Army Research Office and the U.S. Army Futures Command
under Contract No. W911NF-20-D-0002. The content of the infor-
mation does not necessarily reflect the position or the policy of the
government and no official endorsement should be inferred. We
acknowledge the support of C3.ai and Microsoft for our research.

REFERENCES
[1] [n.d.]. Device Functional Role ID via Machine Learning and Network Traffic

Analysis. https://github.com/IQTLabs/NetworkML.
[2] [n.d.]. HOW TO STOP YOUR SMART TV FROM SPYING ON YOU.

https://www.mckinsey.com/~/media/mckinsey/business%20functions/
mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%
20through%202030%20where%20and%20how%20to%20capture%20it/the-
internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf.

[3] [n.d.]. IoT vendors ignore basic security best practices, CITL research
finds. https://www.csoonline.com/article/3436877/iot-vendors-ignore-basic-
security-best-practices-citl-research-finds.html.

[4] [n.d.]. Memory Profiler. https://pypi.org/project/memory-profiler/.
[5] [n.d.]. NetML-Competition2020. https://github.com/ACANETS/NetML-

Competition2020.
[6] [n.d.]. PDML - Packet Description Markup Language. https://wiki.wireshark.

org/PDML.
[7] [n.d.]. pypacker. https://gitlab.com/mike01/pypacker.
[8] [n.d.]. Why Third-Party Vendors Are Responsible for the IoT Security Prob-

lem. https://www.securicon.com/why-third-party-vendors-are-responsible-for-
the-iot-security-problem/.

[9] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: a system for {Large-Scale} machine learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265–283.

[10] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2623–2631.

[11] Eirini Anthi, Lowri Williams, Małgorzata Słowińska, George Theodorakopoulos,
and Pete Burnap. 2019. A supervised intrusion detection system for smart home
IoT devices. IEEE Internet of Things Journal 6, 5 (2019), 9042–9053.

[12] Zied Aouini and Adrian Pekar. 2022. NFStream: A flexible network data analysis
framework. Computer Networks (2022), 108719.

[13] Michael Austin. 2021. IoT Malicious Traffic Classification Using Machine Learning.
West Virginia University.

[14] James Bergstra, Dan Yamins, David D Cox, et al. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in science conference, Vol. 13. Citeseer, 20.

[15] Randeep Bhatia, Steven Benno, Jairo Esteban, TV Lakshman, and John Grogan.
2019. Unsupervised machine learning for network-centric anomaly detection in
iot. In Proceedings of the 3rd acm conext workshop on big data, machine learning
and artificial intelligence for data communication networks. 42–48.

[16] Anil Chacko and Thaier Hayajneh. 2018. Security and privacy issues with IoT in
healthcare. EAI Endorsed Transactions on Pervasive Health and Technology 4, 14
(2018).

[17] Efstratios Chatzoglou, Georgios Kambourakis, and Constantinos Kolias. 2021.
Empirical evaluation of attacks against IEEE 802.11 enterprise networks: The
AWID3 dataset. IEEE Access 9 (2021), 34188–34205.

[18] Rohan Doshi, Noah Apthorpe, and Nick Feamster. 2018. Machine learning ddos
detection for consumer internet of things devices. In 2018 IEEE Security and
Privacy Workshops (SPW). IEEE, 29–35.

[19] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. 2014. An
empirical comparison of botnet detection methods. computers & security 45
(2014), 100–123.

[20] Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New
directions in automated traffic analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 3366–3383.

https://github.com/IQTLabs/NetworkML
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/iot%20value%20set%20to%20accelerate%20through%202030%20where%20and%20how%20to%20capture%20it/the-internet-of-things-catching-up-to-an-accelerating-opportunity-final.pdf
https://www.csoonline.com/article/3436877/iot-vendors-ignore-basic-security-best-practices-citl-research-finds.html
https://www.csoonline.com/article/3436877/iot-vendors-ignore-basic-security-best-practices-citl-research-finds.html
https://pypi.org/project/memory-profiler/
https://github.com/ACANETS/NetML-Competition2020
https://github.com/ACANETS/NetML-Competition2020
https://wiki.wireshark.org/PDML 
https://wiki.wireshark.org/PDML 
https://gitlab.com/mike01/pypacker
https://www.securicon.com/why-third-party-vendors-are-responsible-for-the-iot-security-problem/
https://www.securicon.com/why-third-party-vendors-are-responsible-for-the-iot-security-problem/


Lumen CoNEXT ’22, December 6–9, 2022, Roma, Italy

[21] Ren-Hung Hwang, Min-Chun Peng, Chien-Wei Huang, Po-Ching Lin, and Van-
Linh Nguyen. 2020. An unsupervised deep learning model for early network
traffic anomaly detection. IEEE Access 8 (2020), 30387–30399.

[22] K Hyunjae, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park,
and HK Kim. 2019. IoT network intrusion dataset. IEEE Dataport (2019).

[23] Kenneth Kimani, Vitalice Oduol, and Kibet Langat. 2019. Cyber security chal-
lenges for IoT-based smart grid networks. International Journal of Critical Infras-
tructure Protection 25 (2019), 36–49.

[24] Francisco Sales de Lima Filho, Frederico AF Silveira, Agostinho de Medeiros
Brito Junior, Genoveva Vargas-Solar, and Luiz F Silveira. 2019. Smart detection:
an online approach for DoS/DDoS attack detection using machine learning.
Security and Communication Networks 2019 (2019).

[25] Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.

[26] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai, Do-
minik Breitenbacher, and Yuval Elovici. 2018. N-baiot—network-based detection
of iot botnet attacks using deep autoencoders. IEEE Pervasive Computing 17, 3
(2018), 12–22.

[27] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

[28] Andrew W Moore and Denis Zuev. 2005. Internet traffic classification using
bayesian analysis techniques. In Proceedings of the 2005 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer systems. 50–60.

[29] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
561–577.

[30] Nour Moustafa, Benjamin Turnbull, and Kim-Kwang Raymond Choo. 2018. An
ensemble intrusion detection technique based on proposed statistical flow fea-
tures for protecting network traffic of internet of things. IEEE Internet of Things
Journal 6, 3 (2018), 4815–4830.

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[32] Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi
Mo, Joseph E Gonzalez, Joseph M Hellerstein, Anthony D Joseph, and Aditya
Parameswaran. 2020. Towards scalable dataframe systems. arXiv preprint
arXiv:2001.00888 (2020).

[33] Paul Schmitt, Francesco Bronzino, Renata Teixeira, Tithi Chattopadhyay, and
Nick Feamster. 2018. Enhancing transparency: Internet video quality inference
from network traffic. TPRC.

[34] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
ICISSp 1 (2018), 108–116.

[35] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A Ghorbani.
2019. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE, 1–8.

[36] Saleh Soltan, Prateek Mittal, and H Vincent Poor. 2018. {BlackIoT}:{IoT} Botnet
of High Wattage Devices Can Disrupt the Power Grid. In 27th USENIX Security
Symposium (USENIX Security 18). 15–32.

[37] Natalija Vlajic and Daiwei Zhou. 2018. IoT as a land of opportunity for DDoS
hackers. Computer 51, 7 (2018), 26–34.

[38] Christos Xenofontos, Ioannis Zografopoulos, Charalambos Konstantinou, Alireza
Jolfaei, Muhammad Khurram Khan, and Kim-Kwang Raymond Choo. 2021. Con-
sumer, commercial and industrial iot (in) security: attack taxonomy and case
studies. IEEE Internet of Things Journal (2021).

[39] Kun Yang, Samory Kpotufe, and Nick Feamster. 2020. A Comparative Study
of Network Traffic Representations for Novelty Detection. arXiv preprint
arXiv:2006.16993 (2020).

[40] Kun Yang, Samory Kpotufe, and Nick Feamster. 2021. An Efficient One-Class SVM
for Anomaly Detection in the Internet of Things. arXiv preprint arXiv:2104.11146
(2021).

[41] Maede Zolanvari, Marcio A Teixeira, Lav Gupta, Khaled M Khan, and Raj Jain.
2019. Machine learning-based network vulnerability analysis of industrial Inter-
net of Things. IEEE Internet of Things Journal 6, 4 (2019), 6822–6834.


	Abstract
	1 Introduction
	2 Prior Work & Limitations
	2.1 Taxonomy of prior work
	2.2 Limitations of prior work

	3 Framework: Lumen Overview
	3.1 Overview
	3.2 Lumen development framework
	3.3 Lumen evaluation framework

	4 Implementation 
	4.1 Implementation Details
	4.2 Implementation Challenges

	5 Lumen in practice
	5.1 Methodology
	5.2 Validating the correctness of Lumen
	5.3 Observing state-of-the-art 
	5.4 Improving state-of-the-art

	6 Discussion and future work
	7 Conclusion
	8 Acknowledgement
	References

