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Abstract

Hidden IoT devices are increasingly being used to snoop
on users in hotel rooms or AirBnBs. We envision empowering
users entering such unfamiliar environments to identify and
locate (e.g., hidden camera behind plants) diverse hidden
devices (e.g., cameras, microphones, speakers) using only
their personal handhelds. What makes this challenging is the
limited network visibility and physical access that a user has
in such unfamiliar environments, coupled with the lack of
specialized equipment. This paper presents Lumos, a system
that runs on commodity user devices (e.g., phone, laptop)
and enables users to identify and locate WiFi-connected
hidden IoT devices and visualize their presence using an
augmented reality interface. Lumos addresses key challenges
in: (1) identifying diverse devices using only coarse-grained
wireless layer features, without IP/DNS layer information
and without knowledge of the WiFi channel assignments
of the hidden devices; and (2) locating the identified IoT
devices with respect to the user using only phone sensors
and wireless signal strength measurements. We evaluated
Lumos across 44 different IoT devices spanning various

types, models, and brands across six different environments.

Our results show that Lumos can identify hidden devices with
95% accuracy and locate them with a median error of 1.5m
within 30 minutes in a two-bedroom, 1000 sq. ft. apartment.

1 Introduction

Imagine a user walking into an unfamiliar environment such
as a hotel room or AirBnB. Nowadays, the user has to be wary
of wireless Internet-of-Things (IoT) devices being used to spy
on them. These devices could be installed by the owner or by
a previous guest. This threat is not just hypothetical; there are
numerous reported incidents where [oT surveillance devices
were used in AirBnBs [1-3, 5,9, 11, 16], cruise ships [6],
and motels [10]. A 2019 survey of 2,000 American travelers
revealed that 58% were worried that their host had installed
hidden surveillance equipment, and 11% of respondents had
actually found a hidden camera in some past rental [13].
Ideally, we want to empower users so that as they enter
an unfamiliar space, they can run an app on their personal
handheld (e.g., phone or tablet). This app would report a list
of detected and identified devices and their corresponding
locations. “Detect,” here, means knowing that there is some
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Figure 1: A snapshot of Lumos identifying a device and

visualizing the location with ARKit

device (i.e., binary notification), “identify” entails knowing
what type of device it is (e.g., type=camera), and “localize”
entails knowing the device’s location in the physical space
(e.g., behind the plants). While cameras in particular are im-
minent privacy threats, in general we want to detect/identify
and localize diverse hidden IoT devices, as these could also
be potential threats for tracking users (e.g., [21, 25,33, 66]).

This problem is challenging due to two practical factors.
First, users have limited visibility and control inside such
an unfamiliar environment with their little knowledge of the
devices and their wireless configurations; e.g., they cannot
tap into network interfaces at wireless access points or
instrument the environment. Second, users typically only
have personal (commodity) handhelds and do not carry
expensive hardware or specialized sensing equipment [15,41].
Given our requirements and these constraints, existing
methods are not sufficient for our context (see Table 1).
For example, today’s “spy-tech” solutions rely on manual
and thorough scanning of the environment [4,7, 8, 15, 18].
Other efforts focus exclusively on camera-specific effects
(e.g., motion or light triggering) and do not generalize to
other, more diverse hidden IoT devices [26,51]. Similarly,
network-based device fingerprinting solutions [45, 48, 53]
rely on privileged access to the host network and fail in the
presence of limited network visibility. Finally, many of these
solutions cannot localize devices, and/or would need separate
instrumentation of the environment [37, 59].



Compatible with
Approach Personal Limited Diverse | Localization
Hand- Network Devices | Ability
helds Access
Bug Finder [4, 15]
X v X v
Camera Detector
[7,8,18] Ve Ve X v
mmWave Sensing
(E-Eye) [41] X v v X
Network Traffic at
Router [45,48,53] | v X v X
Camera Detection
w 802.11 Packets | v/ v X X
[26,42]
Lumos
v v v v

Table 1: Comparing existing approaches vs. Lumos

This paper presents Lumos, a system that enables a user to
identify and locate IoT devices in an unfamiliar environment
using a commodity personal device. As a starting point, we
focus on 802.11 WiFi connected devices, which represent
a significant fraction of the IoT device market today [58]. At
a high level, Lumos sniffs and collects encrypted wireless
packets over the air (aka 802.11) to detect and identify the
hidden devices. It then predicts the location of each identified
device with respect to the user as they walk around the
perimeter of the space. Our design makes three contributions:

Identifying diverse devices with limited features: Prior
work associates [oT devices with signatures using higher-
layer information IP, DNS, port numbers, and NTP protocols
(e.g., [45,53]). However, due to limited network visibility, we
can only observe 802.11 headers with coarse attributes. To
address these issues, we design a systematic machine learning
(ML) framework, which considers a broad observable feature
set, rather than handcrafted features [45, 53], both temporally
and across packet header attributes. To tackle device diversity,
we use multiple timescales in feature engineering to extract
device-specific attributes. This allows us to generalize across
a large set of device types from different vendors and with
different hardware settings.

Data acquisition with limited knowledge: Even within a
single protocol like 802.11, there is a large set of channels
that the hidden IoT devices may use. In an unfamiliar setting,
we have no knowledge of when, on what channels, and
for how long each device is transmitting. Prior spectrum
sensing approaches [50] and naive strategies for sequentially
sampling the various channels are slow and miss capturing
devices. Lumos addresses this challenge with a novel
reformulation of the spectrum sensing problem to learn a
coarse transmission pattern of each device over time and uses
this to inform the channel sensing strategy.

Infrastructure-free device localization: Classical wireless
localization systems rely on knowledge of the floor plan or
spatial geometry, or require anchor points (e.g., [29,54,59]),

which are infeasible in our problem setting. Lumos addresses
these challenges by leveraging mobile phone sensors and
the correlation of the user’s motion with variations in signal
strength. By requesting the user to take a short walk around
the perimeter of the space, we can estimate the location of
the IoT device from sparse measurements.

We implemented Lumos on two platforms, a MacBook and
an iPhone, and combined it with an augmented reality (AR)
feature that overlays the device type on the estimated device
location relative to the user (Figure 1). This provides users
with a virtual world view of the physical space. We proto-
typed Lumos using a laptop (2018 MacBook Pro) and an Intel
RealSense Tracking Camera T265. The T265 acts in place of
the visual inertial odometry (VIO) provided by augmented re-
ality frameworks like AR Kit/Core [20, 32] on mobile phones.
Since promiscuous WiFi access is currently disabled on mo-
bile phones, we implemented Lumos as an iOS app running
on an iPhone paired with a Raspberry Pi (Rpi) over Bluetooth.

We evaluate Lumos in six different environments and
across a wide spectrum of 0T device types, for a total of 44
devices. Our evaluation shows that we can accurately identify
device types by 95% in under 30 minutes, and the devices
are then localized with a median localization accuracy of
1.5m with only one walk around the perimeter of each
space of around 1000 sq. ft. We have released our code on
https://bit.ly/lumos-code and have uploaded a demo
of our system at https://youtu.be/QuwMXiyn-e28.

2 Problem Setting, Threat Model, and Scope

Our work deals with an attacker who has placed IoT devices
to spy on users in an unfamiliar environment such as an
AirBnB or hotel room. Figure 2 shows an overview of the
key actors and resources. Our setting consists of two actors:
an Afttacker and a User. An attacker is either the host or a
previous guest who wants to use IoT devices to spy on a
user/guest (in an AirBnB or a hotel room) who has entered
this unfamiliar environment. The user wants to identify and
localize these hidden IoT devices.

These two actors interact with three key resources: Physical
Environment, loT Devices, and the Wireless Network. In our
setting, the Environment could be a single room in a hotel or
a complex multi-room setup in an AirBnB. IoT Devices could
be of various types, such as cameras, speakers, plugs, vacuum
cleaners, and more. We focus on devices that communicate
over WiFi, as this is the most prevalent method of wireless
communication. These devices are connected to the Internet
via an 802.11 Wireless Network controlled by the attacker.

Attacker Capabilities: Next, we formulate the adversary’s
capabilities and constraints.

e Physical Environment: The attacker has complete
control of the environment ahead of time to modify the
environment and to install and hide IoT devices.

e IoT Devices: The attacker purchases and places off-the-
shelf wireless IoT devices to spy on the User. They can
also control various device settings such as resolution,
sensitivity, etc., through device APIs. Similar to prior
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Figure 2: System model with the user, the attacker, and
hidden IoT devices in an unfamiliar environment

work [26,42,45,48,53], we assume that an attacker does
not alter the fundamental behavior of these devices, such
as hacking the firmware, changing the network protocol,
or changing wireless transmission behavior. However,
the attacker can physically masquerade devices; e.g., a
camera hidden inside a thermostat [5] or a smart electric
plug that doubles up as a camera [14]).

e Wireless Network: The attacker has complete access
to the 802.11 wireless network and access point. They
can take a variety of measures to hide the IoT devices.
For instance, they can use a separate WiFi network for
the IoT devices and provide the user access to a separate
guest network. Furthermore, they can assign devices to
different 802.11 wireless channels, enable encryption
(e.g., WPA2/WPA3), and hide the SSID of the network(s)
the IoT devices are connected to.

User Capabilities and Constraints: We assume the user
has access to a personal device such as a mobile phone, tablet,
or laptop, and no other equipment. We assume that they can
enable monitor/promiscuous mode on the personal device
for wireless packet sniffing.

e Physical Environment: The users have access to the
physical space to search and walk around, but they can
not instrument new hardware/equipment in the physical
environment.

e IoT Devices: The user does not have any knowledge of
hidden IoT devices. They don’t know how many devices
are in this unfamiliar environment, what types of devices
are installed, the access point and wireless channel(s) they
are using, or where they are located.

e Wireless Network: The user has limited access to the
wireless network; e.g., given access to a guest network
which could be different from the network(s) that IoT de-
vices are operating on. They can still sniff encrypted broad-
cast WiFi 802.11 packets (across all channels) over the air.

3 System overview

We envision that a user enters an unfamiliar space and runs
the Lumos app on their phone or laptop to identify hidden IoT
devices. The Lumos app can run in the background, while

Data Collection Module Fingerprinting Module

Initial Round-robin
Channel Hopping

Pre-trained Model

¢ _< D;, type;, prob; >
Device-aware <
Channel Sensing

Online Testing

\ 4

802.11 pkts

Localization Module

l< D;, type; >

< D;, lac; >
RSSI-VIO based i

< D;, type;, loc; >
Localization

Figure 3: System overview with three main modules

the phone is sitting in a corner collecting raw wireless (i.e.,

802.11) packets. At any point, the user can request a report,

and Lumos will provide the list of identified devices so far.

Each identified device is depicted using an augmented reality

frontend to assist the user in finding the hidden IoT devices.
Lumos consists of three main modules:

e Device Fingerprinting Module: There are two main
challenges we need to address. First, unlike prior work,
we only have access to MAC-layer information based
on 802.11 headers. Second, we need to handle a diverse
set of devices with different transmission rates. Section 4
explains how we address these challenges by developing
a systematic machine learning approach.

e Data Collection Module: For fingerprinting to work
well, we need a sufficient number of packets from all
devices. However, sniffing the packets transmitted by
each hidden IoT device requires knowing their associated
wireless channels. Unfortunately, this information is not
available in a limited access environment; e.g., the [oT
devices can operate on a different network than the guest
wireless network. We design a device-aware channel
sensing approach, explained in Section 5, that learns the
traffic pattern of each device overtime to decide when,
and for how long, to sense each wireless channel.

o Localization Module: At first glance, this seems similar
to classical wireless localization [59]. Unfortunately, we
cannot directly use these as they require infrastructure
instrumentation [29, 59, 64, 65], prior knowledge of the
floor-plan [22, 27, 39, 46, 60], or fine-grained channel
measurements [24, 37,44, 54,56, 62]. To address these
limitations, Lumos fuses signal strength measurements
that are available in 802.11 packets with VIO (Visual
Inertial Odometry) traces available in mobile phones by
asking the user to take a short walk around the perimeter
of the space. Section 6 elaborates on how Lumos locates
devices from sparse measurements.

End to End View: Figure 3 shows an end-to-end view of
Lumos. First, we use an offline training phase in Lumos’
fingerprinting module for common IoT devices. When a user
enters a new unfamiliar space, Lumos runs a client agent (e.g.,
on the phone) which sniffs the ongoing 802.11 traffic. The
associated packets to each device are then inspected through



the fingerprinting module to identify these devices. Since the
user has no information about the wireless channel on which
these devices are operating, Lumos uses a device-aware
channel sensing mechanism to decide what channel to sniff,
when, and for how long. Lastly, Lumos uses an RSSI-VIO
based localization technique to estimate the coarse location of
each identified device with respect to the user by requesting
the user to walk once around the perimeter of the space.

4 Device Fingerprinting Module

Previous efforts have identified network layer features from
IP, DNS, and NTP packets to be highly correlated with the
IoT device type [45,48,53]. However, they assume privileged
access to the router and network layer headers to obtain
this information. In an unfamiliar environment with limited
access, encrypted wireless 802.11 headers are the only coarse
attributes available to the user’s personal device. This is
even more problematic when dealing with a diverse set
of IoT devices with different transmission behaviors and
communication protocols.

To address these issues, we design a systematic machine
learning framework that extracts the effective features for each
device type by considering the broadest feature set temporally
and across the available packet header attributes. In addition,
our proposed framework automatically tunes the timescale of
the aggregate features (e.g., mean, max, std, etc.) based on the
transmission rate of each device. As a simplified starting point,
we first start with a single channel scenario, where all IoT
devices are operating on the same channel. In Section 5, we
relax this assumption and generalize our proposed algorithm
across multiple unknown wireless channels and will explain
how to integrate the classification module with the data ac-
quisition for the multi-channel operation of IoT devices.

Lumos’ classification engine receives the wireless 802.11
packets transmitted to or from all available IoT devices as
the input. Then, it groups the collected packets based on
their MAC addresses and predicts the device type for each
MAC address by using a systematic feature engineering
and classification method. Next, we explain how Lumos
extracts relevant attributes from 802.11 packets, and how
these attributes are aggregated over time to account for the
diversity of devices. Finally, we explain Lumos’ classifier.

4.1 Feature Engineering

We begin by discussing the available 802.11 layer features
we can use for fingerprinting and how we can select them.

Available Features: Figure 5 shows a sample 802.11
wireless packet. The packet contains metadata attributes,
such as packet inter-arrival times and packet sizes, which can
serve as the basis for defining features for fingerprinting.
Some prior efforts have handcrafted features for device fin-
gerprinting (e.g., [61]). Many of these features, such as packet
length, could still be extracted at the 802.11 layer. If we take
a look at Figure 4, we can see that this feature is still useful to
distinguish between various IoT devices. We also have access
to more classes of features such as packet subtype which are
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Figure 4: The important features are device-specific, due
to the diversity of IoT devices and their heterogeneous
traffic patterns

specific to the 802.11 protocol. For example, the subtype at-
tribute is used in Nest doorbells for informing the access point
that the device is going into sleep mode, while this attribute is
used differently in Nest cameras. Handcrafting these features
is a challenge given the high heterogeneity of IoT devices.

Hence, instead of defining fixed handcrafted features,
we automatically extract relevant attributes per device. To
this end, we start by collecting all possible 802.11 packet
headers and then extract all attributes from each packet. This
results in a total of 125 (max) attributes. However, some of
these attributes have the same value across different devices
(e.g., AP-specific attributes) and do not carry any useful
information. We discard these attributes to simplify the
processing and prevent over-fitting. In our model, after this
pruning step, 52 out of 125 attributes remain.

Multi-Time Resolution Aggregation: Given the set of
attributes, we then construct the feature set by considering dif-
ferent temporal aggregations of each attribute. Specifically, we
define a sliding window of time and apply different aggregate
functions on each raw attribute. These aggregate functions
include mean, standard deviation, median, max and min, sum,
entropy, histogram (normalized frequency count of each bin),
and the number of unique values in a given time window.'

A key challenge, however, is that using a fixed size of time
window does not generalize well across IoT devices with
varying packet transmission rates. On one end, a very small
aggregation window is prone to noise, while on the other end,
a very large aggregation window will dilute the variations,
which is a classical bias-variance tradeoff in ML. Ideally, we
want a small aggregation window for high rate transmission
devices, but a large aggregation window for a low rate
transmitting device. To achieve this goal, we design a multiple
timescales scheme to pick a time window suitable for each de-
vice’s transmission pattern. As shown in Figure 5, we define
a set of time windows with different lengths at a given time

'Some previous work defines aggregation window in terms of the number
of packets. However, this is not extendable to diverse devices, especially if
they do not transmit often [48].



Packet header

v Radiotap Header v@, Length &
Eeraniil | 0 K | N R

Header pad: 0 time

Header length: 56
» Present flags
MAC timestamp: 374471133}

Header

t=At—4, t—4 t t+A  t+d; t+A Attributes
| S
L Wi iw,..
[ Wi

Aggregate functions
F Features

nna:
» Vendor namespace: Broadcq
» Vendor namespace: Broadcq
v 802,11 radio information Fz
PHY type: 802.11g (ERP) (
Short preamble: True

Proprietary mode: None (§
Data rate: 24.0 Mb/s Fk
Channel: 4

Figure 5: Lumos uses multiple time resolutions to define
features for capturing device behaviors

t and then apply each aggregate function on all defined time
windows. The feature vector at time 7 is the concatenation
of all aggregate functions applied at all time windows.

Feature Post-Processing: After computing the features for
each time window, we apply two post-processing steps to
prepare the data for ML training. First, to handle the diversity
of feature value ranges, which can adversely affect the train-
ing,” we standardize the features [17] while maintaining the
distribution of values. Second, we remove correlated features
to avoid over-fitting in the training phase. Specifically, we use
two feature reduction techniques: (1) Selecting the top ten fea-
tures that have the highest mutual information score [57], and
(2) We compute the cross-correlation of features, and for those
features that have a higher than 95% correlation score, we
only keep one of the correlated features and drop the others.

4.2 Model Training and Inference

Training: After post-processing the features, we train dif-
ferent kind of ML classifiers and evaluate their performance
on a separate held-out validation set. We picked XGBoost as
our classifier, as it had the highest accuracy and is also fairly
robust to high dimensional data. We trained our classifier on
the final set of features and define the following device types
as the classes: Smart Camera, Speaker, TV, Plug, Security
Systems, Vacuum, Kitchen Appliances, Bulb, and Doorbell.
There are typically two types of classifiers that can be trained
for such a problem: multi-class and one-vs-rest. A multi-class
classifier learns a single classifier for all the classes, while one-
vs-rest learns one classifier per class. Due to the high diversity
of IoT devices, we select a one-vs-rest classifier. The intu-
ition is that some IoT devices transmit much more frequently
than others, which leads to an extreme class imbalance, both
during training and testing. While multi-class classifiers are
prone to be biased towards the majority class, the one-vs-rest
classifier can independently learn each device. In addition, the
relevant and informative features for each device type could
be different, so picking a set of globally relevant features for
all devices is a sub-optimal choice. Instead, we define the one-
vs-rest classifier to learn important features on a per device
basis. As such, we train a binary classifier per class.

2For example, a packet size could change from 64 to 1000, but a packet
type only takes discrete finite values of either O or 1.
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Figure 6: An example of devices spread across multiple
channels. Lumos uses a channel sensing strategy to

minimize the time needed to ensure it logs a sufficient
number of packets for each device.

Inference: During inference, we sniff packets on a channel
and group them by their MAC addresses. For a device, let
us denote P as the set of sniffed packets for that device.
Then, we define the center of the time window as ¢, which
corresponds to packet arrival times and computes the feature
vector F; based on the algorithm explained in Algorithm
1. Next, Lumos applies all the K classifiers corresponding
to each one-vs-rest device type to F; and computes the
probability of predictions as

Liy=M(F,;),Vk=1:K (D
where M} is the one-vs-rest classifier for device type k and
L, ;. is the probability of predicting the type of device as k at
time 7. We select the final label of the feature vector F; as G;

Gy =argmaxiL, i 2)

Lumos then performs a majority voting for G;s in a given
scanning period to assign a single label to the device. The
same process is repeated for the sniffed packets of other
available devices (every unique MAC address).

5 Device-Aware Channel Sensing

In the previous section, we presented the fingerprinting
module under a simplified assumption where all the devices
operate on a single known channel. In practice, however,
we need Lumos to work in an environment where the IoT
devices are possibly on different wireless networks (shown in
Figure 6) spread over 30 channels across 2.4 and 5GHz WiFi
frequency ranges. Thus, we need a mechanism to monitor
various channels and “hop” across them in order to collect
wireless data from all IoT devices for the fingerprinting step.
However, note that we have no knowledge of what channel,
when, where, and for how long each device is transmitting.

This problem, at a high level, is similar to the spectrum
sensing [50,63] idea in wireless networks where the goal is to
sense as many packets as possible across wireless spectrum
within a given time budget. In spectrum sensing, however, the
objective is to maximize the total number of received packets
across different wireless channels. However, our problem is
different—we need to capture a sufficient number of packets
from each active device to identify its device type.

In the rest of this section, we first start with a hindsight
optimal formulation which assumes that we know the traffic



behavior of each device ahead of time. While this assumption
is not practical, it allows us to formally define the problem
before we relax this assumption.

Hindsight-Optimal Problem Formulation: We consider
a setting where we chunk time into epochs, and in each
epoch, our channel sniffer can sense at most one channel.’
Suppose we have a total time budget of 7' epochs and C
channels and M devices assigned to various channels. Our
goal is to determine a sensing schedule to cover as many
devices as possible. For any given time epoch, let sense;,
(j € [1,C);t € [1,T]) be a binary decision variable denoting
if channel j should be sensed at time ¢.

Note that in order to accurately fingerprint IoT devices, we
need to collect a sufficient number of packets from each IoT
device, so that the ML models have accurate features. Let
NumThresh denote the sensing threshold determined based
on the requirements of the classification engine to correctly
identify the types of devices. Let num; denote the actual
number of packets sensed from a device i given our choice of
{sense;}. This depends on how active the device is. To this
end, we assume that we know the activity matrix (a constant

input) A; ;, denoting if device i is active on channel j at time ¢.

Let covered; be an indicator binary variable denoting if device
i has a sufficient number of packets; i.e., num; > NumThresh.

Formally, the hindsight-optimal problem formulation can
be written as an Integer Linear Program (ILP) as follows:

Vjt: Zsense;; <=1 3

J
Vi: num,-:_thAi, i Xsense; 4)

J,

1, if i >= T

covered: =4 i num,'> NumThresh )

0, otherwise
Vje[l,Clre[l,T):sensej, €{0,1} (6)
Vie[1,M]: covered; € {0,1} 7
Vi€ [1,M]: num; € Integer 8)

Here, Eq 3 captures that we can sense at most one
channel in any given time epoch. Eq 4 captures the total
number of packets sensed per device, and Eq 5 captures
that each device is successfully sensed if we have more than
NumThresh packets. The last three equations simply capture
the constraints on the variables.

This hindsight optimization problem can be solved using
an ILP solver [19,47], if the activity matrix is known,; i.e., if
we already know when each device transmits a packet on its
assigned channel. In our setting, however, the activity matrix

is unknown and we need to solve it without this information.

Next, we explain how Lumos predicts the activity matrix of
each device based on the coarse collected data.

Prior Work on Spectrum Sensing and Limitations: One
approach to solve the above challenge of the missing activity
matrix is to view this as a multi-armed bandit based problem,

3More powerful SDR hardware [30] can sense in parallel but is not a
commodity handheld solution.

as done in Speclnsight [50]. Specifically, to estimate the next
channel number and the time of hopping, they formulate
the problem as a multi-armed bandit game [23] and use the
e-greedy strategy [55] as the solution, wherein it picks a
random channel with probability € and picks the channel with
maximum reward with probability (1 —¢€). The choice of €
controls how much to rely on the learned information and
is set to 0.1. To define the reward function, Speclnsight uses
an indication of how close we are to receiving a packet from
the active devices. So, for a device d at time ¢, the reward

function is defined as
THui[(t—T)/u] —t
Ry(t) =max(1— i [ =T) ] )

where T is the last time a packet \lzvas observed, and y;
represents the mean packet inter-arrival time for the device.
This reward function assumes that the next packet will arrive
at time T +pu, T 4+ 2u, and so on. At time ¢, the next packet
is expected to arrive at time 7 +pux [ (r—T) /u]. The value of
€ controls how much to rely on mean packet inter-arrival esti-
mates. This approach has several issues that make it ill-suited
for our problem. First, the proposed reward function tries to
capture all packets from every device. A high transmission
rate device has lower packet inter-arrival times, and as a
result, high reward value. This results in missing packets from
a low transmission rate device as it is still trying to collect
every packet from a high transmission rate device. Second, it
calculates the mean inter-arrival time from the previously cap-
tured packets. However, some packets transmitted by a device
may be missed while sniffing in another channel, resulting
in inaccurate estimation of averaged inter-arrival time. This
penalty is huge for low transmission devices, as we now need
to wait even longer to capture sufficient packets. For example,
if a device transmits packets at time t =1, 3,5, 7 . . . seconds
and we captured packets at time 1 and 7 seconds, our estimate
of mean packet inter-arrival time would be 6 seconds instead
of the actual 2 seconds. To capture the same number of pack-
ets, it would take 3x longer. Moreover, there are more than
30 possible wireless channels, but a majority of them might
not be active in the vicinity of a user, so it ends up wasting
a lot of time sensing traffic on inactive wireless channels.

Our Approach: We address these shortcomings as follows.
First, to avoid wasting time sensing inactive channels, Lumos
performs a quick round robin iteration across all wireless
channels to discover the active channels. We can discover
the active channels based on whether we sense any beacon
frames. The key insight is that the presence of an IoT device
in a channel corresponds to the presence of an active access
point to communicate with, which is periodically transmitting
beacon frames. Therefore, a simple round robin channel
hopping is sufficient to find the subset of active channels.
Next, to make our scheme unbiased towards low trans-
mission rate devices, we modify the problem formulation to
make reward O for a device if we have sensed enough packets
from that device. It enables Lumos to handle IoT devices
with diverse transmission behaviors. For high transmission
rate devices, we can sense a sufficient number of packets very
quickly and its reward is reduced to 0 so that Lumos can now
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Figure 7: While the correlation of maximum measured RSSI and VIO is sufficient to accurately locate high transmission
devices, our curve-fitting approach is more robust for IoT devices with irregular and low rates of traffic

focus on capturing packets from low transmission devices.

To address the issue of incorrect packet arrival time
estimates, Lumos learns the inter-arrival time from a coarse
estimate of its device type. It uses the classification engine
to determine the device type using a small number of packets
collected up to that time instant. Since this prediction of
device type is based on very few packets, the classifier is
prone to errors. Our empirical studies show that the correct
device type is usually within the top three predictions. For
each device, we make a prediction of its device type and
fetch the corresponding mean inter-arrival times of the top
three predictions directly from the training data as shown
in Algorithm 2. At a first glance, the formulation might
look circular, as we are trying to develop channel sensing to
capture data for device fingerprinting while at the same time
using fingerprinting for our channel sensing scheme. This is
possible because even fewer packets from a device are good
enough for coarse fingerprinting (correct device type in top
three predictions). Currently, we pick a single packet inter-
arrival time estimate for each device type, but this could easily
be modified to pick multiple inter-arrival time estimates.

Since in our scenario we are using a coarse classifier and
its predictions might be inaccurate, we take the maximum of
the above reward function to maximize the number of packets
captured under uncertainty. After switching to a channel,
Lumos spends a fixed time (10 seconds) on that channel. We
set R, for a device to be 0 when we have sensed more than
N packets (e.g., 50 packets) from a device. In addition, the
reward for a channel c is defined as

R.(t)=max(R;), if Ry exists
=RAND(0,1), otherwise

where

R, (1) =0, if sensed more than N packets from device d
T+uix[(1=T) /pi] i
Hi

=max(1— , otherwise

6 Localization

Recall that in addition to detecting and identifying hidden
IoT devices, we need to locate the detected devices to provide
some situational awareness to the user. RF-based source local-
ization is an extremely well-studied problem with a number
of techniques described below. The main contribution of our
work is to recognize the potential of using highly accurate
relative tracking of mobile phones through recent advances in
Visual Inertial Odometry (VIO) in combination with sparse
RSSI sampling. Due to the logarithmic relationship between
RSSI and distance, it is possible to accurately localize a
source when the receiver is in close proximity. This simple
but effective technique allows us to rapidly estimate and
visualize the position of RF sources in augmented reality.

Intuitively, we combine the RSST measurements with the
relative user position determined by VIO on smartphones.
RSSI provides a coarse estimate of distance between each
IoT device and the user’s phone, while VIO determines the
change in position and orientation of the user over time
by integrating the IMU readings with camera frames. At a
high level, we can take multiple measurements of the signal
strengths from different distances to the devices by asking
the user to walk around the environment. While this is a
sparse set of measurements, it is sufficiently spatially diverse
to locate hidden IoT devices within 1 meter of accuracy.

As the user walks in the space, Lumos collects the
(x,y,RSSI) samples, where x and y are relative to the initial
point where the user starts walking. Figure 7 demonstrates
the measured samples for three different IoT devices as the
user walks around a two-bedroom house (the true location of
each device is marked in red, and the point colors represent
the RSSI values). We can see that as the user walks closer
to each device, the RSSI values corresponding to those data
points increase and then reduce as she walks away from
the device (shown in Figure 7). Lumos leverages the spatial
measurements of RSSI values and their variations to estimate
the location of each device.



(0]
o o
55 Zj
(0]
® 0] e

Smart bulb (3)
:::z zz;t:r(gs)s \ Smart bulb (3,4,5,6)
Smart plug (1) \ Smart speaker (8)
Smart TV (8) Smart camera (1,9)
Smart Kitchen (9,1(}) Smart plug (2)

Smart Security (4) || @ Smart TV (7)
Smart doorbell (1) Smart doorbell (1)

Smart vacuum (7)

© 0]

®

Smart bulb (1) ®
Smart TV (2)

Smart plug (4)
Smart doorbell (5) @

Smart camera (3)
Smart speaker (6) BATH

=

CLOSET <
e
CLOSET ()

ﬂ
© 101O01©
© © 0

| \‘
l ol |

(b) Test Office

(a) Training Setup

(c) Test Apartment 1

(d) Test Apartment 2 (e) Test Lab Space

Figure 8: Our mini IoT testbed and floor plans of the different experimental setups

A naive approach for estimating the location of IoT
devices is to to pick the (x,y,RSSI) sample with the highest
RSSI value, which represents the closest the user got to
the device. However, this approach only works if the user
walks within a very close proximity of the device. Grid-based
optimization [35] is another technique that is widely used
for parameter estimation with sparse samples. In this case,
Lumos forms a grid in the user’s walking region (with cells
of 0.5m by 0.5m) and calculates the average observed RSSI
values for each grid. The center of the grid with the maximum
average RSSI is then selected as the device location. We can
see in Figure 7 that the grid-based localization outperforms
the maximum RSSI approach in lower rate devices such
as WiZ Smart Light Bulbs. However, it is still sensitive to
noisy measurements, especially for devices with irregular
transmission rates (WiZ2 vs. WiZ5 in Figure 7).

To further refine location, Lumos takes the sparse samples
and fits a surface of the form v = f(x,y) to the scattered data
in the vectors of (x,y,RSSI). For this, Lumos forms 1 by 1
centimeter grids of (xq,yq) as the query points and interpo-
lates 3D triangulation-based linear surfaces [40] at each point.
Then the regional maximum of the surface is extracted as
the estimated device location. A sample of the interpolated
surface is shown in Figure 7 for the WiZ2 Smart Light Bulb,
and we can see that this interpolation technique outperforms
the other two methods. As such, Lumos combines the
(x,y,RSSI) data points for each device to locate them relative
to the user’s location. While this technique cannot estimate
the absolute location of devices in the physical space, this
relative localization is sufficient to overlay a virtual object
relative to the position and orientation of the user’s phone.

7 Evaluation

We implemented Lumos in multiple unfamiliar environments
and diverse hidden devices. Our main results are:

e Lumos can accurately identify diverse devices with 95%
accuracy in under 30 minutes. This is comparable to
techniques using more fine-grained features from higher
network layers at the router, such as IP, DNS, etc.

e Lumos’ channel sensing outperforms baselines such as

Category Devices

Camera Nest, Canary, Ring, Blink, EZVIZ, TP-
Link KC100, TP-Link KC120, D-Link,
Geeni, NightOwl, HIDVCAM, OVEHEL,
LookCam, MiniSpy, AlphaTech

Microphones | Google Home, Amazon Echo, SONOS,
Amazon Show, Apple HomePod, Lenovo
Smart Clock

Doorbell Nest Doorbell, Kangaroo, Ring

Security Simplisafe, ADT, Ring

TV Vizio, Panasonic, TCL

Plug Amazon, Wemo, TP-Link, Jinvoo Smart
Plug, Gosund Smart Power Strip, TP-Link
Power Strip

Kitchen Anova Cooker, iKettle

Bulb WiZ1, WiZ2, WiZ3, WiZ4

Vacuum Roomba & Deebot

Table 2: Devices used as candidate hidden devices

random, round robin, and state-of-art spectrum sensing
techniques.

e Our localization system can locate devices within 1.5m
with a single random walk through the space.

e Lumos can identify previously unseen devices of the
same type from different vendors and is robust across
typical changes in device settings.

7.1 Implementation and Experimental Setup

Prototype: Lumos needs to sniff 802.11 packets over the
air, which is currently disabled on mobile phones without
special permission from the manufacturer. There are some
device-specific workarounds [12] for WiFi sniffing using
rooted Android devices, which shows there is no fundamental
hardware/software limitation in providing such capability
and this functionality could be unlocked given enough
justification. Alternatively, we develop two proof-of-concept

implementations of Lumos using commodity hardware:
e Using a MacBook Pro(2018) to sniff 802.11 wireless traf-
fic and an Intel RealSense Camera T265 for capturing the



VIO traces. This roughly approximates the performance
of ARKit/Core available on smartphones.

e Using a combination of an iOS device and a Rpi, Lumos
runs as an application on the phone and uses Bluetooth
to communicate with Rpi. The Rpi is used to sniff 802.11
wireless traffic (since wireless sniffing is currently dis-
abled on mobile phones), and the phone is used to capture
VIO trace using ARKit. Our mobile application is devel-
oped with Unity and can be compiled for iOS or Android.
since we only rely on Visual Inertial Odometry module
in smartphones for localization, Lumos can run even in
older smartphones with basic camera and IMU sensors.

For the experiments below, we use the first setup.

Devices: Table 2 shows the devices we use for evaluation.
We chose these to cover the major types of IoT devices
available through retailers such as Amazon or Target. We
include many cameras and microphones, as they collect the
most privacy-sensitive data about a user. In addition, each
category has multiple devices of the same type to avoid
over-fitting to a particular vendor. We also included multiple
devices from the same vendor to highlight the operational
differences of different types of devices.

Environments: For testing, we deployed a variable number
of devices in four different physical spaces (a total of six
setups) as shown in Figure 8. Our first deployment was in
an office space wherein a total of eleven IoT devices were
deployed in various locations and they all were connected to a
single access point. To test the performance of our system in
new settings with different background traffic, we deployed
a subset of devices in two separate houses with different floor
plans, shown in Figure 8. We also performed a more compre-
hensive evaluation in a lab space with various device setups,
each of which included a different density of devices at all
eight locations. These setups include Low with one device
from each category at each of the eight locations, Medium
with two devices from each category, and High with all de-
vices across the eight different locations shown in Figure 8e.

In all of these experiments, the [oT devices operated in a
normal steady-state mode; the occupants used the same WiFi
access point without any instructions, and the background
traffic from non-IoT devices existed. In addition, the traffic
from Apartment 1 and 2 included IoT devices that were
unseen in the training dataset. For example, in Apartment 1,
there were instances of smart TVs and smart light bulbs that
do not exist in the training set.

For localization, we asked users to walk once around
the perimeter of the experimental spaces with no other
instructions and each user picked the direction or walking
route freely. We repeated this process 5 times in each
experimental location for more thorough evaluations.

Baselines for Comparison: To the best of our knowledge,
there is no prior work that presents an end-to-end combination
of device fingerprinting, cross-channel data acquisition,
and localization. As such, we use baselines for individual
modules.

e Fingerprinting: We use the device classification technique

Environment # Devices | Device Identification | Localization
Office 11 95.64% 1.6 m
Apartment 1 10 95% 1.4 m
Apartment 2 6 98.05% 1.5m
Lab Space-Low 9 95% 1.6 m
Lab Space-Medium 18 95.02% 1.6 m
Lab Space-High 44 96% 1.5m

Table 3: End-to-end results

proposed by Sivanathan et.al. [53]. Note that this tech-
nique uses raw and fine-grained information from higher
layers (TCP, DNS), while Lumos only uses (encrypted)
802.11 packets. So, the goal is to show that even without
accessing these fine-grained features, Lumos is capable of
achieving similar performance.

o Channel Sensing: We compare Lumos to Speclnsight [50],
the closest related work developed for spectrum sensing.

e Localization: We compare our proposed surface-fitting
based localization technique against maximized RSSI and
grid-based techniques presented in Section 6.

7.2 End-to-End Performance

We run end-to-end evaluations of Lumos in four separate
settings. We ran our system for 30 minutes of scan time (27
minutes of wireless sniffing followed by 3 minutes of walk-
ing) and we report the final device identification accuracy and
localization error. In the first three buildings shown in Figures
8b-8d, we used the pre-deployed IoT devices and their origi-
nal setups as more natural evaluations. For the lab space setup
(Figure 8e), we ran more sensitivity experiments; e.g., deploy-
ing at least one, two, or three devices from each category in
each of the eight locations. The results are reported in Table 3.
There was only one access point in all four settings, and all
the devices were in the same channel. However, the channel
was unknown to the user. (We evaluated the sensitivity to
multiple active channels in subsequent evaluations.)

As we can see in Table 3, Lumos can identify the type of
devices with an accuracy of 95% to 98%. Figure 9 shows the
localization performance of Lumos across the four testing
environments. We can see that Lumos achieves a median
localization accuracy of 1.5m, which is sufficient to roughly
locate the IoT devices in the space. Determining a sufficient
level of accuracy for detecting a device is subjective; however,
1-2 meters provide users with a reasonable starting point.
Figure 1 shows a 1 meter transparent sphere floating above
a shelf with a localized IoT device using Apple’s ARKit for
tracking. The origin for the ARKit session was manually
aligned with the origin from our T265 tracking system to
simulate the expected final AR performance. One would
imagine as new localization technologies like UWB gain
traction, the expected accuracy would dramatically increase.

7.3 Device Fingerprinting Sensitivity Analysis

Device-Based Confusion Matrix: Figure 10a and Fig-
ure 10b compare Lumos’ fingerprinting performance with
the baseline method across different device types. Among all
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Figure 11: Lumos receives at least
one packet from each IoT device at 80
seconds and can accurately detect the
device types by 92 %

aggregation

the device types, we can see that Lumos achieves very high
accuracy in detecting cameras and lower accuracy in detecting
smart light bulbs. This is mainly due to the packet transmis-
sion rate. Cameras usually have a very high data transmission
rate as they are continuously streaming video frames. In addi-
tion, the format of transmitted data (image or video) is unique
enough to create a distinct signature. On the other hand, smart
plugs have very infrequent data transmission, providing little
information for fingerprinting. Compared to the baseline,
Lumos has comparable but slightly lower accuracy than prior
work, which has access to more fine-grained features from
higher network layers (e.g., flow duration, port numbers, and
DNS data). This validates our hypothesis that 802.11 packets
contain enough information for fingerprinting IoT devices.

It should be noted that some of the IoT devices in
Apartments 1 and 2 (such as smart TVs and smart light bulbs)
are previously unseen instances; i.e., the ML models are not
trained for that specific device. However, we can see that
Lumos can still accurately identify these devices based on
their common traffic behavior to their device type.

Impact of Classifiers: To evaluate the impact of classifiers
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Figure 13: Device-aware channel
sensing outperforms the baselines by

Lumos’s . . S
discovering 2x more devices in a fixed

scan time.
Classifier Accuracy
Extra Trees 83.88
Random Forest 83.79
AdaBoost 93.20
XGBoost 95.26

Table 4: Comparison of different classifiers

on the performance of the system, we calculated the raw
classification accuracy for different classifiers before applying
majority voting. Table 4 shows the classification accuracy for
the top four accurate classifiers, and we can see that XGBoost
performs best across different device types by achieving an
average accuracy of 95.26%. The automatic feature selection
in XGBoost and its robustness to high dimensional data are the
main factors that make this classifier suitable for our use case.

Impact of Multi-Time Resolution Aggregation: Next,
we evaluate the utility of multi-time resolution features
in fingerprinting. We train a new classifier using a fixed
aggregate time window of 20 seconds, compared with the
full system including multiple timescales between 1 second
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and 20 seconds. As shown in Figure 12, using multi-time
resolution aggregation improves the average classification
accuracy from 72.3% to 90.2%.

Impact of Scan Time on Fingerprinting: Next, we analyze
how the classification module performs for different scan
times. To isolate the impact of the fingerprinting module
from channel hopping, here we assume that all devices are
in a single channel which is also known to the user.

To put our results in context, we consider a hypothetical
oracle that is able to identify a device as soon as it observes
a single packet. As shown in Figure 11, the oracle achieves
100% accuracy at 80 sec; i.e., it has received at least one
packet from all IoT devices. This is a lower bound on the
time to classify, since we need to observe at least one packet.

In this respect, we see that with only 40 seconds worth of
capture, Lumos can achieve 92% accuracy. Across all devices,
the average number of packets received at 80 seconds is 20
packets, with a minimum and maximum of 0 and 40 packets,
respectively. The accuracy improves as we collect data over
more time, but Lumos can accurately classify most devices
within a shorter interval. It should be noted that this is under
the assumption of a known and single channel and does not
account for the channel sensing scan time to find the active
devices, which will be further evaluated in the next section.

7.4 Channel Sensing Sensitivity Analysis

Impact of Channel Sensing Scan Time on Device Discov-
ery: To decouple the impact of classification performance
from channel sensing and to provide a fair comparison with
prior work [50], we define a notion of Device Discovery Rate
for this evaluation. We mark a device as discovered if we
have seen more than N packets from that device. Our analysis
shows that an average of 50 packets is sufficient to identify
different IoT devices, so we set NumThresh =150 packets. For
a fixed number of channels (in this case, five channels), we
randomly assign each device (for a total of 15 devices) to a
channel and compare Lumos’ device-aware channel sensing
algorithm with random, round robin, and SpecInsight [50].
Figure 13 shows that Lumos substantially outperforms the
baselines and discovers 92% of devices in 15 minutes and
100% of devices by 40 minutes.

Intuitively, the baselines ignore the diversity of device
types and their traffic patterns, while Lumos predicts the
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next packet arrival time from each device. SpecInsight wastes
time capturing packets from a high transmission device, thus
missing the lower transmission devices. We note that the
minimum required scan time to discover all devices depends
on the number of access points or active channels, which we
evaluate next.

Impact of the Number of Active Channels: As discussed
above, the scan time needed is a function of the number of
active channels and active devices. To study this, we vary the
number of active channels (C) from 1 to 30 and the number
of active devices (M) from 1 to 15. In each iteration, we
randomly select M devices and C channels and randomly
assign the selected devices to selected channels. For each
scan time and C value, we perform ten independent channel
assignment iterations and vary the number of devices. Figure
14 shows that to achieve a fixed device discovery rate, the
scan time increases as we increase the number of channels.
(The error bars show the variations for the different number
of devices and across different iterations.) With only one
active channel, Lumos only requires 16 minutes to discover
all devices. (This time is mainly used in the initial learning
phase.) Even in a complicated scenario with devices spread
across 20 channels, Lumos can achieve 80% discovery rate
in around 15 minutes and 100% discovery rate by 50 minutes.
This is well beyond the worst-case scenario we envision,
as there are usually 1-5 access points in a regular indoor
environment. Even in these hypothetical cases, the user can
leave their smartphone or laptop running Lumos for a longer
time to discover all hidden devices.

7.5 Localization Sensitivity Analysis

The user’s walking pattern can significantly affect the local-
ization performance. On one hand, RSSI is more accurate
at close ranges, so the closer the user walks by the devices,
the more accurate the RSSI measurements we can obtain. On
the other hand, VIO systems suffer from accumulated error
as the user walks away from the starting point. To evaluate
the impact of the user’s walking speed on localization
performance, we collected two sets of data from each test
location: one when the user walks the perimeter of the room
with a normal to fast speed, and one when the user walks very
slowly. We observe slightly lower accuracy in faster speeds
(from a median accuracy of 1.4m with lower speed to 1.6m
at higher speed). The reason is that the received packets are
more sparse in space when the user walks faster. However,
the majority of IoT devices have a higher transmission rate
than the typical walking speed. So, Lumos can localize IoT
devices irrespective of the user’s walking speed.

We also compared the three localization methods explained
in Section 6 and noticed negligible difference across the three
houses. The surface-fitting based localization is expected to
outperform the baselines for low transmission rate devices.
However, all three methods perform similarly if the device
has a frequent and regular transmission pattern. In our current
testbed, we have a mix of both low and high transmission
devices, so the average accuracy remains constant.
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Figure 15: Lumos maintains its localization performance
in different device setups

Impact of Device Setups: While the location of devices in
the room does not affect the fingerprinting, it could impact
localization accuracy depending on how close the user ends
up walking around them. To study the effect of device setups,
we select a subset of eight devices with semi-uniform packet
transmission rates to isolate the effect of the traffic pattern
and locate them in eight different locations in the lab space
(shown in Figure 8e). For each of these setups, the user
performs the same walking pattern around the perimeters
of the room. Figure 15 shows the localization accuracy
in each of these eight locations. The median localization
accuracy in all of these setups falls between 0.5m to 1.5m,
which shows the robustness of the localization. However, we
still see that the range of errors varies across setups, which
is mainly due to the relative distance between the actual
location of the devices and the walking pattern. For example,
in both setups 4 and 8, the devices are located at the corner
of the room, where the user’s walking route may fall further
from the devices. This adds more noise to the interpolation
and localization process. Nevertheless, the 1.5m average
accuracy of Lumos still provides fairly accurate zone-based
localization. For example, if we divide the entire lab space
into eight zones of 2 by 2 meters, each corresponding to
one cubicle, Lumos achieves 93% accuracy in correctly
estimating the zone of each device among all eight setups.

Impact of Walking Duration: Another factor affecting
the localization performance is the amount of exploration
the user is inclined to do. This particularly impacts devices
with low transmission rates, as longer exploration provides
more samples to correct the curve fitting process. To evaluate
this factor, we installed 16 devices (at least one from each
device type) in Locations 1, 5, and 7 of the lab space, shown
in Figure 8e. For each of these setups, we performed three
experiments with 1 round, 2 rounds, and 3 rounds of walking
around the perimeters of the space. Figure 16 shows that
the user can improve the localization performance by taking
longer exploration routes. This effect is more significant
for devices with lower transmission rates, such as security
devices, smart bulbs, or kitchen appliances. Note that cameras
and microphones stream data with high transmission rates, so
one round of walking is sufficient to estimate their locations.
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Figure 16: Longer walks can improve the localization
performance especially for low data rate devices, but
only one round of walking is sufficient for cameras and
microphones with frequent transmission patterns

7.6 Other Sensitivity Analysis

Effect of Feature Reduction Technique: It is a common
technique to reduce the feature set by selecting a subset
of features from the original dataset as it helps to prevent
over-fitting on the training dataset. Also, many of the ma-
chine learning models don’t perform well in the presence of
correlated or duplicated features. So, as explained in Section
4.1, we try two different reduction techniques: (1) selecting
the top ten features that have the highest mutual information
score, and (2) dropping the features with a high cross
correlation score (more than 95%) and keeping only one of
those features. Table 5 demonstrates that removing correlated
features is more effective in improving the classification
performance, while the top ten features do not cover all the
important features for differentiating device types.

Feature Reduction | Accuracy| | Traffic Type | Accuracy
Use All 90.67 Incoming 89.73
Top 10 88.08 Outgoing 83.18
Drop Correlated | 95.03 Bidirectional | 95.03

Table 5: Removing corre-
lated features increases
the average accuracy to
95 %

Table 6: Combining incom-
ing and outgoing traffic
improves the classification
performance

Effect of Changing Device Settings: Many IoT devices
have various configurations or settings such as image, audio
or video quality, motion sensitivity, or microphone on/off.
Such setting modifications could affect the traffic pattern and
hence the signature of each device type. We evaluated the
impact of device settings by selecting a subset of IoT devices
(in this case, all 15 cameras in our testbed). We trained
Lumos with the default setting of the cameras and tested
the fingerprinting performance under three different setting
modes: High (max resolution, max sensitivity, microphone



on), Low (min resolution, min sensitivity, microphone off),
and Medium (min resolution, max sensitivity, microphone
on). As we can see in Figure 17, the fingerprinting accuracy
slightly drops when we evaluate Lumos on cameras with
modified settings. However, Lumos can still generalize well
across different cameras from different vendors and settings.
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Figure 17: Classification performance of cameras for
various device parameters

Effect of Traffic Direction: Another factor that could affect
the performance of classifier is the type of traffic. When sniff-
ing 802.11 packets, we can capture both incoming traffic from
IoT devices and outgoing traffic to the devices. We compare
the classification performance for each of these cases as well
as considering both directions. In the case of bidirectional
traffic, we compute separate features for incoming and
outgoing traffic and then concatenate those before passing
them on to the classifier. As we can see in Table 6, combining
both incoming and outgoing traffic results in higher accuracy.
Since each IoT device has a distinct incoming and outgoing
behavior, combining two directions of data allows Lumos to
capture more fine-grained information from each IoT device.

8 Discussion

Evading Lumos: Our goal with Lumos is primarily to
empower users to gain awareness about potential surveillance
by typical attackers in unfamiliar environments. That said,
we acknowledge some avenues for more powerful attackers
to evade Lumos. Since the ML step uses the MAC address to
classify devices, the attacker can evade Lumos by performing
frequent MAC address randomization. The adversary can
also modify hidden device behavior to vary packet sizes
or inter-arrival time, via custom hardware or modifying the
firmware. Similarly, an attacker could evade localization
by randomly changing their transmit power. Note, however,
that these assume more expert attackers outside of our threat
model of a typical host/guest in an AirBnB-like setting.
Finally, since we can only detect/localize WiFi transmitting
devices, an attacker can evade detection by avoiding
wireless transmission; e.g., storing data locally, using wired
connections, or other wireless communication protocols.

Unprofiled Devices: Lumos can identify devices as long as
similar device types were seen in the training corpus. Recall
that in some of our setups, Lumos did uncover previously
unseen hidden devices. As a preliminary experiment to
evaluate how Lumos performs for unprofiled devices, we
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did a leave-one-out experiment. We trained Lumos on all
but one of the cameras we use for testing. For 13 out of 15
unprofiled cameras (Blink, TP-Link KC100, Canary, etc.),
Lumos achieves median accuracy of 98%. (On inspecting the
misclassifications, we find that the Nest camera has a unique
behavior. It is the only camera in our dataset that uses the
802.11 subtype header field for different message exchanges.)
This is promising as it suggests Lumos can potentially
generalize across different device brands and models, as long
as it has seen at least one device with similar behavior in the
training phase. We plan to explore this further in future work.

Other Wireless Technologies: While our approach concep-
tually extends to other wireless protocols (including 5G),
the actual performance may vary due to different channel
allocation/resource management algorithms that could impact
relevant features.

End-to-End Prototype on a Phone: Lumos needs to sniff
802.11 packets over the air, which is currently disabled
on mobile phones without special permission from the
manufacturer. There is no fundamental hardware/software
limitation in providing such capability, and this functionality
could be unlocked given enough justification. There has been
also some workaround rooted Android phones for enabling
WiFi sniffing. In this paper, we provide two alternative proof
of concept prototypes that circumvent this limitation by either
pairing a smartphone with a Rpi for WiFi sniffing, or pairing
a laptop with an Intel RealSense Camera for VIO tracking.
Another alternative setup could use a combination of a laptop
for WiFi sniffing and a phone for VIO tracking, which are
both readily available to most users. However, a user has
to carry both the laptop and mobile phone for localization,
which may be less convenient than carrying a small Rpi.

9 Related Work

We discussed a number of closest related efforts inline. Here,
we focus on other related work.

Device Fingerprinting Methods: The topic of device finger-
printing has seen many solutions over the past decade in net-
work analytics [43,49], IoT space [36,45,48,53], or at the hard-
ware level, especially for surveillance cameras [26,42]. These
solutions can be grouped into various categories depending on
the kinds of features they are using for device fingerprinting:

o Device identification using encrypted wired packets: Many
solutions [28, 43, 49] have been proposed for device
identification using encrypted wired packets, and are
typically run at ISPs. As such, these techniques are not
applicable for our scenario, as a user in an AirBnB or
a hotel wouldn’t have access to these set of features.
However, some of the features related to packet timing
and size could also be extracted at the 802.11 layer.

e Device identification using decrypted wired packets:
Much of the existing effort for device classification in
the IoT space focuses on network traffic at the router
[36,45,48,53]. These systems usually build ML models
using full-stack packet information across the link,
network, transport, and application layers or have full



access to the wireless router, which is not possible in our
scenario due to limited access provided to the user.

e Device identification using encrypted wireless packets
(802.11 layer): There are a few techniques proposed for de-
vice identification at the 802.11 layer, but they are tailored
towards detecting hidden cameras. Most of these methods
use a stimulating or probing approach to trigger the hidden
cameras; e.g., by altering the light level [42], shining light
toward the camera to detect the reflected light from the
lens [7,8, 18], or walking to activate motion sensors [52].
While these techniques are shown to be effective for de-
tecting cameras, they don’t extend to other IoT devices
which can still pose a serious privacy risk, e.g., [66].

Unlike these solutions, Lumos uses a passive approach by
only relying on encrypted wireless 802.11 packets without
access to the router and also detects a broader spectrum of
hidden devices.

Using Hardware Properties for Detection: Some hidden
detectors are based on semiconductor-specific properties such
as a harmonic signature that can be sensed by transmitting
an RF signal. Non-Linear Junction Detector (NJLD) [15]
Low-end bug finders [4] are popular examples.However,
the transceiver should be in close proximity to the hidden
device. A recent work [41] also develops a portable 24GHz
millimeter-wave (mmWave) probe to detect active electronics
by observing their response in mmWave signal reflections.
Unfortunately, all of these systems take significant time
to scan an entire space. Moreover, they merely detect the
presence of devices and do not identify the device types.

Device Localization: In general, wireless localization
schemes map signal measurements into geometric parameters
(distance or angle) to localize a target device with respect to
reference points [31, 38, 54], or fingerprint the received signal
strength at all possible locations [29, 65]. The key challenge
with the first class of efforts is that commercial WiFi chipsets
do not provide fine-grained data to calculate the distance or
angle between the transmitter and receiver. While there is
some work on estimating Angle of Arrival (AoA) or Time
of Flight (ToF) [34], these techniques only apply for 802.11n
(with High-Throughput and OFDM), while many IoT devices
still use legacy WiFi protocols. With respect to the second
class of work, it requires significant effort to characterize the
environment and pre-label landmarks, which is not feasible
in our problem setting.

10 Conclusions

Given the recent spate of abuse of IoT devices to spy on
unsuspecting users, there is an imminent need for a low-cost
approach to help users to detect, identify, and localize IoT
devices when they enter an unfamiliar environment. What
makes this problem uniquely challenging is the combination
of the limited wireless access, the lack of sophisticated
hardware, the diversity of potential snooping devices, and the
inability to instrument the environment. In designing Lumos,
we tackle these challenges and present a practical proof-of-
concept realization that can be overlaid on a user-friendly AR
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interface to inform users of the risks lurking in an unknown
environment with high accuracy and in near real-time. We
plan to open source Lumos to help users gain awareness
in unfamiliar settings and to inspire further innovation. As
future work, we plan to extend Lumos to run on more mobile
devices and support a broader spectrum of wireless protocols.
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Appendix A Pseudo-Code for Feature Extrac-
tion Algorithm

Algorithm 1 Feature Extraction and Aggregation

1: procedure FEAT_EXTRACT(packets,t,A)
2 CF={} > Feature at time ¢
3 A< maximum sensing time
4 for feat in {packet size, packet time, flags ...} do
5: FE =P, . feat
6 CF={}
7 for 6in {1,2,3,5,10,.. A/2}) do
8 Gis=1{F_sFis}
9: for AggFun in {mean, std, hist, sum, ...} do
10 A=AggFun(G,3)
11 CF,=[CFEA]
12: end for
13: end for
14: end for

15: end procedure

Appendix B Pseudo-Code for Device Aware
Channel Sensing Algorithm

Algorithm 2 Device Aware Channel Sensing
1:
: if RAND < ¢ then

2: > epsilon greedy
3: cx; =RAND(c)
4: else
5: for d in devices do
6: if Sensed_Enough > N then
7: R;,=0 Wt
8: else
o: G123 =Device_Classification(packets )
10: U123 =Get_Interarrival(G 2 3)
11: Ry(t)=max(1 — T+/-11‘,2.3*(ﬁ(lfl—;ﬂ/m,z,s—f)
12: end if '
13: end for
14: for c in channels do
15: if devices sensed on that channel then
16: R:(t)=max(Ry)
17: else
18: R.(t)=RAND [0,1]
19: end if
20: end for
21: end if

22: cxy —argmax(R_c)

Appendix C Impact of Device Density

We deployed three subsets of devices in the lab test environ-
ment and compared our classification performance. These
three subsets were Low (with 1 device from each category),
Medium (2 devices from each category), and High (all de-
vices). As we can see from Figure 18, device density doesn’t
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have any significant impact on our classification performance.
This is mainly because the device inference happens for each
device independently. So, the only parameter that changes
is the volume of background traffic as the number of active
devices increases. However, this factor does not affect finger-
printing performance except in very rare cases when the net-
work is at the highest capacity, resulting in some packet loss.

100.04
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82.5 , '

80.0 .
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Setup
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Figure 18: Impact of device density on classification
performance
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