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Abstract The presence of standard video editing practices
in broadcast sports videos, like football, effectively means
that such videos have stronger contextual priors than most
generic videos. In this paper, we show that such informa-
tion can be harnessed for automatic analysis of sports videos.
Specifically, given an input video, we output per-frame infor-
mation about camera angles and the events (goal, foul, etc.).
Our main insight is that in the presence of temporal context
(camera angles) for a video, the problem of event tagging
(fouls, corners, goals, etc.) can be cast as per frame multi-
class classification problem. We show that even with simple
classifiers like linear SVM, we get significant improvement
in the event tagging task when contextual information is
included. We present extensive results for 10 matches from
the recently concluded Football World Cup, to demonstrate
the effectiveness of our approach.

Keywords Sports video analysis · Broadcast video · Event
classification · Content-based retrieval

1 Introduction

Modern developments in multimedia creation, storage and
compression technologies have paved the way for extensive
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archiving of video content. Building applications for search,
summarization or editing on such large databases require
extensive information about the content of these videos.
Current sources of such descriptions are only limited to tex-
tual content. Since textual descriptions are both inefficient
(descriptions are subjective and vary from person to person)
and incomplete (it is difficult to describe all contents in a
video to facilitate search, summarization or editing), it is
important to build tools to automatically analyze video con-
tent and identify salient parts, to generate textual and other
kinds of descriptions over the timeline. Given the diverse
nature of video content on theweb, this task is easier said than
done. One approach to this problem is to isolate and process
videos by genre. Such an approach has a twofold advantage:
(1) each genre could be associatedwith a set of rules for video
creation thatmightmake it easier to design video understand-
ing algorithms and (2) it is easier to distinguish between
relevant and irrelevant semantic contents when information
about genre is given (for example, information about crowds
in a football match is rarely searched for and hence can be
ignored). Recently, problems related to sports video analysis
have particularly received much attention in this direction
with many direct applications like automated highlights gen-
eration [1] or analysis of team activities and strategies [13],
being built upon semantic analysis of video content.

Following these lines, we have looked at the problem of
automatic semantic analysis of football broadcast videos.Our
work is built on the fact that broadcast videos of football
matches are constructed in a very structured manner, thus
imposing some useful restrictions on the content. Firstly,
there are fixed vantage points in a football field where PTZ
cameras are placed for recording such events, thus limiting
the number of views. Secondly, the edited video switches
between these cameras in strong correlation with events
occurring on the field.
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Fig. 1 An example of event tagging using the proposed approach on
the first 30 min of the semifinal match between Brazil and Germany
in World Cup 2014. The plot shows the occurrence of four different

events (goal, foul, corner and gameplay) over the timeline. The pro-
posed method successfully detects all the goal events

This inherent structure of editing in broadcast sports
videosmotivates us to ask the question, how to define context
in such structured settings?We answer this problem based on
two key realizations. Firstly, most camera angles associated
with the events like goal or corners are predetermined. For
example, in the event of a goal, a broadcast video automat-
ically switches to focus in on player huddles/celebrations,
which is unlikely to happen during normal game play. Sec-
ondly, this strong association also extends temporally since
editing rarely switches between unrelated camera angles,
which is to say that camera angles vary smoothly across time,
except when shot changes occur. This strong temporal and
event correlationwith camera angles prompts us to argue that
contextual information in sports video analysis can largely
be based upon knowledge of camera angles.

Based on the above discussion, we argue that for the prob-
lem of automated sports video analysis two main tasks gain
prominence. Firstly, classification of images into different
camera views forms the initial basis of contextual under-
standing of a sports video. Secondly, the analysis of events in
such videos gives an almost complete summary of the match
(a motivating example is illustrated in Fig. 1). Accordingly,
we focus on these two aspects in the current paper. Further-
more, as evidence of the usefulness of such information, we
present an application of context reliant targeted spatial seg-
mentation. Formally, we make the following contributions

– We present an automatic approach to first identify the
camera view type for each frame in a video.

– Usingpredictedview types,we thenpropose an algorithm
to accurately predict salient events like goal, foul, corner,
substitution, etc.

– We also present an application of spatial segmentation
that benefits from such contextual information.

2 Related work

Previous work on semantic segmentation of videos has
looked into two different directions: first is segmentation
based on shots and second is based on events. Shot-based
temporal segmentation divides the video into smaller seg-
ments by identifying transitions from a camera to another.

Most existing methods [11,14,18] perform shot segmenta-
tion by detecting transitions (cut, fade, dissolve, etc.) based
on difference of features in consecutive frames. The seg-
mented shots are then used as minimal units for further tasks.

In [25], Xu et al. classified football video shots into the
views of global, zoom-in and close-up using the grass area
ratio. In [24], Gu et al. used motion vectors in addition to
dominant color to classify different view types in football
broadcasts. Duan et al. [4] used a more elaborate set of fea-
tures fusing motion vectors, color, texture, shape and shot
length information for a similar task. These approaches suffer
from the drawback of strong reliance on detecting transitions,
which may not be robust due to strong correlation between
different shots (for example, a camera change may not result
into difference in frame color histograms, which are com-
monly used features in these approaches). To suppress the
negative effects of inaccurate shot boundaries, it is also com-
mon to manually label the transition frames [25]. Our work
addresses this issue in a more elaborate manner, by first
training detectors for different camera types (as illustrated
in Fig. 2) and then assigning each frame an unique camera
label. By merging consistent camera labels over time, our
method in turn can be used to obtain shot-based segmenta-
tion.

On the other hand, event-based segmentation divides the
video into shorter clips where each clip contains only one
event. The granularity of event is lower than that of shot (an
event can compass several shots), and there is no standard
relation between an event and the number of shots in it. In
[17], Qian et al. define an event clip as a set of sequential
video frames, which begins with a global view (far zoom-out
view) and ends with non-global views. They further use hid-
den conditional random fields to classify event clips into five
different categories like goal, shoot, normal, etc. But such a
hard-coded definition of an eventmay not always hold. Sigari
et al. [18] segment the video based on camera motion (esti-
mated using block matching between consecutive frames)
and use this information to detect event like counter-attack.
Xie et al. [22] used a sliding window approach to classify the
football video into play vs break segments.

Heuristic rule-based approaches [1,22] have also been
proposed for the detection of event boundaries. These
approaches perform low-level analysis to detect marks (field,
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Fig. 2 We classify camera viewpoints into five different categories, namely (from left to right) ground zoom-in, ground zoom-out, top zoom-in,
top zoom-out and miscellaneous (covering mainly the crowd view)

lines, arcs and goalmouth), player positions, ball position,
etc. A set of hard-coded rules based on these low-level fea-
tures is then used to detect corresponding events. Assfalg et
al. [1] used such a rule-based approach for identification of
salient events like goal, corner, kickoff, etc.

Recently, purely data-driven approaches have gained
importance in sports broadcast, for example [2] learnt direc-
torial styles by training classifiers on a training set of
previous broadcasts. They suggest that such an approach
could also be useful to determine the boundary of the salient
events. Following these lines, we employ a simple bag-of-
features [3] representation combined with support vector
machines (SVMs) for both view type and event classifica-
tion. The advantage of our approach is that it is independent
of any ad hoc rules or hard-coded definitions, and thus, it
is more generalized and can be easily extended to different
sports.

Multi-model approaches are also common. Previous work
[8] has looked at the problem of event detection using fusion
of audio visual features. The main idea in these approaches
is that the increased audio activity is a cue for important
moments in the game. Textual information has also been used
with visual features for event detection [23]. These methods
typically use thematch report and game log obtained from the
web as the text source and require the alignment of the web-
casting text with the broadcast sports video. On the contrary,
the proposed method in this paper is purely based on visual
data.

Recentwork [13] has looked at the problem of discovering
team behaviors or detecting the locations where the play evo-
lution will proceed [9] by analyzing plan view tracks of the
players. The plan view tracks are usually obtained using a set
of static cameras manually installed around the correspond-
ing sports field. Although these methods have demonstrated
impressive results, they are not applicable for analysis in
broadcast videos where only the feed from a single moving
camera is available at a given time.

Far zoomed-out shots have been used for the context of
sports classification [7] and recognition of group activities
in football videos [10]. The work in [7] exploits the fact
that the playing surface is largely visible in far zoomed-
out viewpoints, and different sports can be classified based
on the type of playing surface. In [10], Kong et al. built a
local motion descriptor by grouping SIFT keypoint matches
into foreground point set and background point set and then

used it to classify events like left side attacking or left side
defending, etc. Applicability to only far zoomed-out shots
limits these approaches in the case of broadcast videos,which
require ability to process input from different viewpoints (as
illustrated in Fig. 2). Our approach, on the other hand, takes
advantage of different viewpoints and presents a comprehen-
sive solution.

3 Method

In this section, we discuss the two key components of the
proposed method for automatic analysis of football videos,
namely camera viewpoint estimation for each frame of the
video and marking salient events on the timeline (event tag-
ging).

3.1 Camera viewpoint estimation

Football broadcast videos are usually edited from a set of
source videos recorded from different viewpoints. By ana-
lyzing 52 matches of World Cup 2014, we found out that
these camera viewpoints can be broadly categorized into five
different categories, which are illustrated in Fig. 2. The inclu-
sion of camera angles (ground or top) accounts for the main
difference over the previous works, which segregate the cam-
era viewpoints only on the basis of their shot sizes (e.g.,
medium shot or a close-up). Although most of the game play
is covered by top-view cameras located in the crowd area, the
ground view cameras (placed at sidelines at field level) play
an important role in viewing experience.They are quite handy
during breaks and salient events and are used as standard by
almost all broadcasters. An example of camera switches dur-
ing a goal event is illustrated in Fig. 3.

Our goal is to automatically predict the camera viewpoint
for each frame of an edited football broadcast video, as this
provides a strong context for other higher-level tasks (for
example, the pattern of transitions between camera view-
points is correlated with different salient events as illustrated
in Fig. 3). We approach this problem by learning a per-frame
multi-class classifier.

Frame representation: Each frame is represented using the
classical bag-of-words (BoW) approach [3]. SIFT features
are first computed for each frame independently, which are
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Fig. 3 Typical viewpoint transitions in a goal event (top zoom-out → top zoom-in → ground zoom-in → ground zoom-out → miscellaneous).
The camera framing changes with respect to both size and angle

Fig. 4 We classify events into five different categories, namely (from left to right) goal, corner, foul, substitution and gameplay

then clustered using k-means clustering algorithm to build a
visual vocabulary (where each cluster corresponds to a visual
word). Each frame is then represented by the normalized
count of number of SIFT features assigned to each cluster
(BoW histograms). The length of the feature vector is equal
to the number of clusters.

Using the BoW feature representation, our method learns
a multi-class SVM to classify different camera labels. Train-
ing is performed by manually annotating a set of frames with
corresponding camera labels. The classification is performed
per-frame basis, but for classifying a frame we consider fea-
tures from a temporal window of 40 frames centered around
it.

We further assume that the camera transitions (cuts) are
smooth, and each camera viewpoint is maintained for a min-
imum amount of time before cutting to a different camera.
This is a fair assumption, as fast and abrupt camera transi-
tions may appear disturbing to the viewer and are avoided by
the expert editors [19]. We benefit from this assumption to
smooth out the noise in per-frame camera label prediction,
using a Markov random field (MRF) optimization approach.

The optimization method takes as input the multi-class
SVM scores for every frame t of the video. It outputs a
sequence ξ = {st } of camera labels st ∈ [1 : M], where
M is the total possible camera labels (five in our case) for all
frames t = {1 : N }. We minimize the following global cost
function:

E(ξ) =
N∑

t=1

Ed(st ) +
N∑

t=2

Es(st−1, st ). (1)

The cost function consists of a data term Ed that measures
the evidence of the object state given the SVM scores and a
smoothness term Es which penalizes camera transitions. The
data term and the smoothness term are defined as follows:

Ed(st ) = − log(P(st , t)). (2)

here P(st , t) is the SVM classification score for camera label
st at frame t . And,

Es(st−1, st ) =
{
0 if st−1 = st ,

λ otherwise.
(3)

where λ is a constant, which is determined empirically.
Finally, we use dynamic programming (DP) to solve the
optimization problem presented in Eq. 1. The DP algorithm
constructs a graph with M × N nodes (M rows, N columns)
and computes the minimum cost to reach each node. Finally,
we backtrack from theminimumcost node in the last column.

3.2 Event tagging

Given a video clip, the goal of event tagging is to mark all
the salient events on the timeline. It is an important prob-
lem in sports analysis as it can produce activity description
and other high-level results (summarization, highlights gen-
eration, etc.). In our work, we consider four different salient
events (goal, corner, substitution and foul) and a gameplay
event (which broadly covers rest of the possible events). The
selection was motivated by the online textual commentaries
where these four salient events are distinctly marked. An
instance for of each of the five classes is illustrated in Fig. 4.

Similar to camera label estimation, we design event
tagging problem as a per-frame classification task. For clas-
sifying a frame, the feature vector is built using a total of 40
frames centered at that frame, where each individual frame
is represented using the BoW histograms, camera label and
motion features. The BoW histograms capture the correla-
tion between the events and the distribution of features, and
they are obtained in a similar manner as in previous section.
The camera label per frame is defined as a five-dimensional
Boolean vector and captures the correlation of an event with
camera transitions.

The motion features represent the correlation of player
movements with different events. They are computed from
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the player tracks obtained using the combination of discrim-
inative trained deformable part models (DPMs) proposed
by Fezenswalb et al. [5] and the data association approach
of Pirsiavash and Ramanan [16]. The player detections are
performed per-frame basis using a DPM model specifically
trained for the case of football videos.

Training DPM : While training DPMs, the choice of nega-
tive examples strongly impacted the quality of the detector.
Using a fixed set of 200 images with manually annotated
bounding boxes for players (2120 instances of players) as
positive examples and varying the negative examples, we
trained three different versions of DPM:

1. Using randomly sampled windows from frames of foot-
ball videos as negative examples (not overlapping with
players and similar in size). Approximately 20,000 neg-
ative examples were used.

2. Using entire VOC 2007 dataset for negative samples (all
classes except pedestrians)

3. Using both VOC 2007 dataset and randomly sampled
windows from football videos

We then compared the detection performance of these
three cases with the pre-trained pedestrian detector on a set
of 75 test images. The DPM model trained with only VOC
dataset as negative examples gave best results andwas finally
used for obtaining the player detections.

The per-frame detections are then combined into player
tracks using [16]. The result is a set of bounding boxes
represented by center (x, y) and height (h) and their corre-
sponding labels (representing different tracks). Player tracks
shorter than four frames are ignored. Using the correspond-
ing bounding boxes in consecutive frames, we compute a
nine-dimensional motion feature vector (mean xy-motion,
median xy-motion, average h, median h, min-h, max-h and
number of corresponding bounding boxes).

The BoW histograms, camera label and motion features
are then concatenated for each frame individually. Finally,
we perform experiments on event classification using both
the mean and concatenation of features from 40 individual
frames. The classification is performed using a five-class
SVM, which is trained using manually annotated ground
truth data. The per-frame classification results are then tem-
porally smoothed in a similar way as in Eq. 1, penalizing
frequent event transitions.

4 Experiments

We perform experiments on broadcast video sequences from
10 matches of Football World Cup 2014. We present results

on the camera label estimation and the salient event classifi-
cation.Wemake quantitative comparisons in each case using
manually annotated ground truth data. Furthermore, using an
application of spatial segmentation, we show that even a sim-
ple algorithm with the knowledge of camera viewpoint can
bring as much as 20% improvement over the state of the
art. Each of these experiments is described with detail in the
proceeding sections:

4.1 Camera label estimation

Wemanually annotated two 45-min videos (324,000 frames),
from two different matches with camera labels (with each
frame assigned an unique label) for the quantitative analysis
of camera label estimation. One part was used for training
and another was used for testing.

We compare our method with two commonly used
approaches from the previous work based on color [15,25]
and the motion vectors [24]. The color-based approaches
classify shots into different classes based on the ratio of the
green color or the color histogram analysis. We implemented
a similar color-based algorithm using ten bin histograms and
classified shots into different categories using ratio of the
dominant color (we used dominant color instead of a fixed
shade of green to bring further robustness). The ratios for
each class were learnt from the training data.

For motion vector-based classification, we learnt a SVM
classifier based on optical flow between consecutive frames.
The optical flowwas computed by down-sampling the image
to p × p pixels, where p denotes the bin size. We tested
different bin sizes, and only the best result is presented in the
paper (using p = 20).

We obtained an average accuracy of 45, 61 and 85%
using color-based approach, optical flow-based approach and
our method, respectively, using independent per-frame clas-
sification. The accuracy improved to 56, 65.4 and 92.2%
respectively, after theMRF smoothing. The confusion matri-
ces of results obtained after MRF smoothing are given in
Tables 1, 2 and 3.

The dominant color ratio-based approach (Table 1) fails
to do the classification accurately. Strong misclassifica-
tion between top zoom-out and top zoom-in shots can be
observed. This occurs due to the large ratio of green color in
both top zoom-in (usually close-up shots from top angle) and
top zoom-out shots. The color-based approach completely
fails to classify miscellaneous (crowd) shots and also heavily
confuses among ground zoom-out and ground zoom-in shots.
The optical flow-based approach also gives noisy results and
strongly confuses top zoom-out shots with other view points.

On the other hand, our method provides highly accurate
results (Table 3). It almost perfectly classifies top zoom-out
shots, which typically cover major part of the football game.
The confusion of other classes with top zoom-out shots is
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Table 1 Camera label
estimation results using
dominant color ratio with five
different camera viewpoints
(percentages)

Top zout Top zin Ground zout Ground zin Misc

Top zout 81.4 6.9 8.2 3.4 0.1

Top zin 68.7 15.9 9.3 6.1 0

Ground zout 3 7 79.7 10.3 0

Ground zin 3.3 5.7 70.4 20.6 0

Misc 2.5 1.8 33.6 55.7 6.4

Bold values denote per class classification accuracies

Table 2 Camera label
estimation results using optical
flow

Top zout Top zin Ground zout Ground zin Misc

Top zout 88.8 2.3 5.9 2.3 0.7

Top zin 36.2 25.9 17.3 17.7 2.9

Ground zout 33.6 8.9 38.4 16.2 2.9

Ground zin 28.7 11.6 24.4 32.4 2.9

Misc 30 14 22 16 18

Bold values denote per class classification accuracies

Table 3 Camera label
estimation results using our
method

Top zout Top zin Ground zout Ground zin Misc

Top zout 98 0.7 1.2 0.1 0

Top zin 0.8 65.9 8.1 25.1 0.1

Ground zout 0.4 3.4 79.6 15.1 1.5

Ground zin 0.1 1.4 19 78.5 1

Misc 0 0.1 0.2 4 95.7

Bold values denote per class classification accuracies

also negligible (column one in Table 3). In general, we give
high accuracy formost classes (near 80%) and the confusion,
when occurs, is understandable. For example, in tight close-
up shots, it is difficult to distinguish between top zoom-in and
ground zoom-in camera angles (the background is blurred
in both cases and only the player profile contributes to the
features).

4.2 Event tagging

For event tagging experiment, we created a dataset of 176
clips encompassing all the five events. The dataset includes
43 goal sequences, 30 corner sequences, 42 substitution
sequences, 27 fouls sequences and 34 gameplay sequences.
The clips were extracted from the video by manually anno-
tating the start and the end of the event. The length of each
sequence is different and is defined based on the knowledge
of the game. For example, a goal event starts from the point
the ball enters the goal post and ends at the new kickoff (so
the goal event includes all the celebrations). Similarly, a cor-
ner event starts just before the corner kick and ends at the first
deflection. The sequences for gameplay event were of ran-
dom length. We used 60% of the data for training/validation
and 40% for testing. Example videos of each kind of event
with qualitative results are provided in the supplementary

material. Another qualitative result on an interesting 30-min
sequence (with five goals in quick succession) is shown in
Fig. 1.

For quantitative analysis, we sampled test data clips from
different classes and joined them in random order to cre-
ate a large video sequence. The event classification task was
then performed per-frame basis on this large sequence. We
tested classification task using both themean (takingmean of
features from 40 frames) and concatenation (concatenating
features from 40 frames). The average accuracy of around
80% was obtained in both the cases, which improved to
85.5% after MRF smoothing.

The confusion matrix of results after MRF smoothing
(using mean features from 40 frames) is given in Table 6.
The goal event and gameplay event are predicted with an
accuracy over 85%. The confusion, when occurs, is under-
standable; for example, some corner events lead into goals
or near misses and in such instances the corner event is mis-
classified as goal event. Similarly, substitution event is often
followed with the crowd viewpoint (cheering the player) and
replay of goals (or assists) by substituted player, which leads
to confusion between substitution and goal event.

Comparing results in Tables 4, 5 and 6, we can observe
that both context(camera label information) and motion
features bring significant improvements in event recogni-
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Table 4 Event tagging results using only the BoW histograms consid-
ering five different events (percentages)

Corner Foul Goal Gameplay Subst.

Corner 43.4 4.9 31.3 9.8 10.6

Foul 0 48.5 32.9 13.7 4.9

Goal 2.5 8.9 82 4.5 2.1

Gameplay 3.9 4.2 5.8 85.2 0.9

Subst. 1.6 25.5 41.1 0.7 31.1

Bold values denote per class classification accuracies

Table 5 Event tagging results using the combination of camera label
information with the BoW histograms

Corner Foul Goal Gameplay Subst.

Corner 71.2 0 28.8 0 0

Foul 0.5 43.8 40.2 8 7.5

Goal 0.6 8.7 81.2 4.2 5.3

Gameplay 3.4 3 2.4 91.2 0

Subst. 0 12.7 32.7 0 54.6

Bold values denote per class classification accuracies

Table 6 Event tagging results using the combination of BoW his-
tograms, camera label information and the motion features

Corner Foul Goal Gameplay Subst.

Corner 75.1 5.4 18 0.6 0.9

Foul 0.2 57.4 22 10.4 10

Goal 2.7 3.4 84.6 4.2 5.1

Gameplay 0.9 1.5 1.5 94.6 1.5

Subst. 1.3 9.6 24 2.7 62.4

Bold values denote per class classification accuracies

tion task. For example, the accuracy of predicting corner
improves by almost 30% after including camera label infor-
mation (Tables 4, 5). Similarly, includingmotion information
brings almost 15% improvement in predicting foul event
(Tables 5, 6). Overall, the average accuracies increased from
77 to 81.8% after adding camera context. The average accu-
racy further improved to 85.5% after the inclusion of motion
features. In terms of time complexity, the initialmethod using
only BoW histograms runs at around 1 fps in our current
implementation on a single-core Intel-i5 CPU with 16GB
memory. Adding camera label information does not bring
any significant change, but including motions cues increases
computational time to around 0.4 fps.

We further compare our method with a hidden con-
ditional random field (HCRF)-based method [17] and a
recent action recognition using trajectory-pooled deep-
convolutional descriptors [21] (with combined spatial and
temporal features). For comparison with [17], we use our
own implementation for computing features with sequence
classification toolbox from [20]. The results with precision
for predicting each event are presented in Table 7. We can

Table 7 Comparison of our method with TDD [21] and HCRF [17]

Corner Foul Goal Gameplay Subst.

TDD 21.05 12.82 77.45 77.08 25.80

HCRF 7.6 15.5 6.6 77.13 86.44

Ours 75.1 57.4 84.6 94.6 62.4

Bold values denote highest accuracy per class across the three algo-
rithms

clearly observe that our approach outperforms the generic
state-of-the-art action recognition method [21], which shows
the importance of the context. Our method also improves the
precision over a more sophisticated (using ad hoc domain-
specific features) sequence classification method [21] on
most of the events.

4.3 Spatial segmentation

In this section, we demonstrate the usefulness of camera
label information with an application of spatial segmenta-
tion. Given an individual frame, the task is to assign each
pixel with an unique class label. We consider three different
classes, i.e., players, crowd and playing field. The exper-
iments are performed on a dataset of 50 images with top
zoom-out camera labels and 50 images with zoom-in camera
labels (sampled both from ground zoom-in and top zoom-in
cameras). The images are equally sampled from 10 differ-
ent matches to cover different challenges in segmentation
like shadows, different color player jerseys, etc. The ground
truth labels for all the 100 images are created manually.

We investigate two different segmentation approaches.
First,we follow the class-based image segmentation approach
of Ladicky et al. [12], which casts the segmentation problem
as graph cut-based inference on conditional random fields.
Second, we propose a segmentation approach specific to top
zoom-out views.Ourmain insight is that knowing the context
can help to designminimal segmentation algorithms bringing
significant improvement in terms of both time and labeling
accuracy. Knowing that the camera label is a top zoom-out,
we can assume that the large part of the framewill be covered
by playing field, which can be efficiently segmented based
on color. We use a variation of Heckbert’s [6] median-cut
algorithm to estimate dominant color and segment out the
playing field in normalized RGB space. The segmentation
is performed using a threshold on Euclidean distance from
the dominant color. The holes in the playing field are then
labeled as players, and the rest is labeled as crowd.

We then trained three instances of automatic labeling envi-
ronment (ALE) [12]: first for the top zoom-out camera labels,
second for the zoom-in camera labels and third for the com-
bined set. Half of the total images were used for training
in each case. The ALE segmentation results for top zoom-
out and zoom-in are illustrated in Table 8. We can observe
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Table 8 Results of average per class recall measure, defined as
True Positives

True Positives + False Positives on ALE [12]

ALE top zoom-out ALE zoom-in

Players 44.4 80.8

Field 99.31 93.3

Crowd 99.8 91.5

The recall measure for class Players is low in top zoom-out viewpoints

that ALE fails to segment players accurately in images with
top zoom-out camera labels. Interestingly when we trained
ALE by taking frames with from both zoom-out and zoom-in
viewpoints, we obtained nearly same results. This suggests
that ALE is not taking full advantage of the context. We
then performed segmentation using the second context-aware
approach (based on dominant color) and the recall for the
class Players improved to 64.2% maintaining nearly the
same recall for Field and Crowd classes. The results from
thedominant color-based approachwere obtained in real time
compared to 30-h training (for 50 images with image reso-
lution of 720p) and 3-h testing (4–5 min per frame) in case
of ALE. This clearly shows that knowing context (like cam-
era labels) can bring significant improvements for the task of
spatial segmentation in terms of both performance and recall.

5 Conclusions

In this paper, we have investigated the problem of automatic
analysis of football broadcast videos. We have shown that
this problem can be partitioned into two smaller problems,
namely camera viewpoint estimation and event tagging. We
have demonstrated that since the input videos are already
edited, the camera viewpoint information provides a natural
context, which could be exploited to improve the other task
of event tagging.

Based on thorough quantitative analysis on variety of
tasks in 10 football matches, we have justified our claims.
Our method obtains an overall accuracy of 92.2% for cam-
era viewpoint estimation and 85.5% accuracy for event
classification. We have also demonstrated that the contex-
tual approach can outperform state-of-the-art deep-learning-
based action recognition approaches.We further demonstrate
that the accuracy of tasks like spatial semantic segmentation
can be improved by as much as 20% using the context.
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